分享
2023学年河南省八市重点高中联盟高考压轴卷数学试卷(含解析).doc
下载文档

ID:35339

大小:1.43MB

页数:16页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河南省 重点高中 联盟 高考 压轴 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为( ) A. B. C. D. 2.设全集,集合,,则( ) A. B. C. D. 3.已知函数,对任意的,,当时,,则下列判断正确的是( ) A. B.函数在上递增 C.函数的一条对称轴是 D.函数的一个对称中心是 4.已知数列满足,(),则数列的通项公式( ) A. B. C. D. 5.复数满足,则复数在复平面内所对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.关于函数在区间的单调性,下列叙述正确的是( ) A.单调递增 B.单调递减 C.先递减后递增 D.先递增后递减 7.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分不必要条件 8.已知命题,且是的必要不充分条件,则实数的取值范围为( ) A. B. C. D. 9.双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为( ) A. B. C. D. 10.若不等式对于一切恒成立,则的最小值是 ( ) A.0 B. C. D. 11.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是( ) A. B. C. D. 12.函数的图象大致为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有_________种. (用数字作答) 14.已知,则________.(填“>”或“=”或“<”). 15.已知向量=(1,2),=(-3,1),则=______. 16.设等比数列的前项和为,若,,则__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数,若的解集为. (1)求的值; (2)若正实数,,满足,求证:. 18.(12分)已知函数,. (1)当时,判断是否是函数的极值点,并说明理由; (2)当时,不等式恒成立,求整数的最小值. 19.(12分)已知函数.其中是自然对数的底数. (1)求函数在点处的切线方程; (2)若不等式对任意的恒成立,求实数的取值范围. 20.(12分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励. (1)求1名顾客摸球2次摸奖停止的概率; (2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望. 21.(12分)已知等差数列满足,. (l)求等差数列的通项公式; (2)设,求数列的前项和. 22.(10分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为. (1)求曲线的直角坐标方程和曲线的参数方程; (2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 由题,侧棱底面,,,,则根据余弦定理可得 ,的外接圆圆心 三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为 点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径 公式是解答的关键. 2、B 【答案解析】 可解出集合,然后进行补集、交集的运算即可. 【题目详解】 ,,则,因此,. 故选:B. 【答案点睛】 本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题. 3、D 【答案解析】 利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断. 【题目详解】 , 又,即, 有且仅有满足条件; 又,则, ,函数, 对于A,,故A错误; 对于B,由, 解得,故B错误; 对于C,当时,,故C错误; 对于D,由,故D正确. 故选:D 【答案点睛】 本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题. 4、A 【答案解析】 利用数列的递推关系式,通过累加法求解即可. 【题目详解】 数列满足:,, 可得 以上各式相加可得: , 故选:. 【答案点睛】 本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力. 5、B 【答案解析】 设,则,可得,即可得到,进而找到对应的点所在象限. 【题目详解】 设,则, ,, 所以复数在复平面内所对应的点为,在第二象限. 故选:B 【答案点睛】 本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力. 6、C 【答案解析】 先用诱导公式得,再根据函数图像平移的方法求解即可. 【题目详解】 函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增. 故选:C 【答案点睛】 本题考查三角函数的平移与单调性的求解.属于基础题. 7、A 【答案解析】 试题分析:α⊥β, b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A. 考点:充分条件、必要条件. 8、D 【答案解析】 求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解. 【题目详解】 解:命题,即: , 是的必要不充分条件, , ,解得.实数的取值范围为. 故选:. 【答案点睛】 本题考查根据充分、必要条件求参数范围,其思路方法: (1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解. (2)求解参数的取值范围时, 一定要注意区间端点值的检验. 9、D 【答案解析】 根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,代入整理及得,又已知,即可求出离心率. 【题目详解】 由题意可知,代入得:, 代入双曲线方程整理得:,又因为,即可得到, 故选:D. 【答案点睛】 本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于,,的方程或不等式,由此计算双曲线的离心率或范围,属于中档题. 10、C 【答案解析】 试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论. 解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立, ∵y=-x-在区间上是增函数 ∴ ∴a≥- ∴a的最小值为-故答案为C. 考点:不等式的应用 点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题 11、D 【答案解析】 根据题意利用垂直直线斜率间的关系建立不等式再求解即可. 【题目详解】 因为过点M椭圆的切线方程为,所以切线的斜率为, 由,解得,即,所以, 所以. 故选:D 【答案点睛】 本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题. 12、A 【答案解析】 确定函数在定义域内的单调性,计算时的函数值可排除三个选项. 【题目详解】 时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足. 故选:A. 【答案点睛】 本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项. 二、填空题:本题共4小题,每小题5分,共20分。 13. 【答案解析】 试题分析:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数有5×2×1×1×1=1. 考点:排列、组合及简单计数问题. 点评:本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详. 14、 【答案解析】 注意到,故只需比较与1的大小即可. 【题目详解】 由已知,,故有.又由, 故有. 故答案为:. 【答案点睛】 本题考查对数式比较大小,涉及到换底公式的应用,考查学生的数学运算能力,是一道中档题. 15、-6 【答案解析】 由可求,然后根据向量数量积的坐标表示可求 . 【题目详解】 ∵=(1,2),=(-3,1),∴=(-4,-1), 则 =1×(-4)+2×(-1)=-6 故答案为-6 【答案点睛】 本题主要考查了向量数量积的坐标表示,属于基础试题. 16、 【答案解析】 由题意,设等比数列的公比为,根据已知条件,列出方程组,求得的值,利用求和公式,即可求解. 【题目详解】 由题意,设等比数列的公比为, 因为,即,解得,, 所以. 【答案点睛】 本题主要考查了等比数列的通项公式,及前n项和公式的应用,其中解答中根据等比数列的通项公式,正确求解首项和公比是解答本题的关键,着重考查了推理与计算能力,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1);(2)证明见详解. 【答案解析】 (1)将不等式的解集用表示出来,结合题中的解集,求出的值; (2)利用柯西不等式证明. 【题目详解】 解:(1),, , 因为的解集为,所以, ; (2)由(1) 由柯西不等式, 当且仅当,,,等号成立. 【答案点睛】 本题考查了绝对值不等式的解法,利用柯西不等式证明不等式的问题,属于中档题. 18、(1)是函数的极大值点,理由详见解析;(2)1. 【答案解析】 (1)将直接代入,对求导得,由于函数单调性不好判断,故而构造函数,继续求导,判断导函数在左右两边的正负情况,最后得出,是函数的极大值点; (2)利用题目已有条件得,再证明时,不等式 恒成立,即证,从而可知整数的最

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开