温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
哈尔滨市
第九
中学
2023
学年
高考
冲刺
数学模拟
试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为( )
A. B. C. D.
2.定义运算,则函数的图象是( ).
A. B.
C. D.
3.已知命题,;命题若,则,下列命题为真命题的是( )
A. B. C. D.
4.复数的虚部为( )
A. B. C.2 D.
5.设M是边BC上任意一点,N为AM的中点,若,则的值为( )
A.1 B. C. D.
6.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为( )
A. B. C.2 D.
7.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=( ).
A. B. C. D.5
8.下列函数中,图象关于轴对称的为( )
A. B.,
C. D.
9.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是( )
A. B. C. D.
10.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为( )
A. B. C. D.2
11.若,满足约束条件,则的取值范围为( )
A. B. C. D.
12.定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.函数的极大值为________.
14.已知的终边过点,若,则__________.
15.给出以下式子:
①tan25°+tan35°tan25°tan35°;
②2(sin35°cos25°+cos35°cos65°);
③
其中,结果为的式子的序号是_____.
16.已知函数的图象在处的切线斜率为,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)求函数的单调区间;
(2)若,证明.
18.(12分)已知,函数.
(1)若,求的单调递增区间;
(2)若,求的值.
19.(12分)已知函数,其中.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)设,求证:;
(Ⅲ)若对于恒成立,求的最大值.
20.(12分)设函数,
(1)当,,求不等式的解集;
(2)已知,,的最小值为1,求证:.
21.(12分)在中,角、、所对的边分别为、、,角、、的度数成等差数列,.
(1)若,求的值;
(2)求的最大值.
22.(10分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.
(1)求发生调剂现象的概率;
(2)设营业店铺数为X,求X的分布列和数学期望.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
设,则MF的中点坐标为,代入双曲线的方程可得的关系,再转化成关于的齐次方程,求出的值,即可得答案.
【题目详解】
双曲线的右顶点为,右焦点为,
M所在直线为,不妨设,
∴MF的中点坐标为.代入方程可得,
∴,∴,∴(负值舍去).
故选:A.
【答案点睛】
本题考查双曲线的离心率,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意构造的齐次方程.
2、A
【答案解析】
由已知新运算的意义就是取得中的最小值,
因此函数,
只有选项中的图象符合要求,故选A.
3、B
【答案解析】
解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;
取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.
∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.
故选B.
4、D
【答案解析】
根据复数的除法运算,化简出,即可得出虚部.
【题目详解】
解:=,
故虚部为-2.
故选:D.
【答案点睛】
本题考查复数的除法运算和复数的概念.
5、B
【答案解析】
设,通过,再利用向量的加减运算可得,结合条件即可得解.
【题目详解】
设,
则有.
又,
所以,有.
故选B.
【答案点睛】
本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.
6、C
【答案解析】
由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间
上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.
点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.
7、C
【答案解析】
试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1
所以|a+bi|=,选C
考点:复数的代数运算,复数相等的充要条件,复数的模
8、D
【答案解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.
【题目详解】
图象关于轴对称的函数为偶函数;
A中,,,故为奇函数;
B中,的定义域为,
不关于原点对称,故为非奇非偶函数;
C中,由正弦函数性质可知,为奇函数;
D中,且,,故为偶函数.
故选:D.
【答案点睛】
本题考查判断函数奇偶性. 判断函数奇偶性的两种方法:
(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数
(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.
9、C
【答案解析】
首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.
【题目详解】
设公差为d,由题知,
,
解得,,
所以数列为,
故.
故选:C.
【答案点睛】
本题主要考查了等差数列的基本量的求解,属于基础题.
10、B
【答案解析】
求出圆心,代入渐近线方程,找到的关系,即可求解.
【题目详解】
解:,
一条渐近线
,
故选:B
【答案点睛】
利用的关系求双曲线的离心率,是基础题.
11、B
【答案解析】
根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.
【题目详解】
画出可行域,如图所示:
由图可知,当直线经过点时,取得最小值-5;经过点时,取得最大值5,故.
故选:B
【答案点睛】
本题考查根据线性规划求范围,属于基础题.
12、B
【答案解析】
由题意可得的周期为,当时,,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.
【题目详解】
是定义域为R的偶函数,满足任意,
,令,
又,
为周期为的偶函数,
当时,,
当,
当,
作出图像,如下图所示:
函数至少有三个零点,
则的图像和的图像至少有个交点,
,若,
的图像和的图像只有1个交点,不合题意,
所以,的图像和的图像至少有个交点,
则有,即,
.
故选:B.
【答案点睛】
本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
对函数求导,根据函数单调性,即可容易求得函数的极大值.
【题目详解】
依题意,得.
所以当时,;当时,.
所以当时,函数有极大值.
故答案为:.
【答案点睛】
本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.
14、
【答案解析】
】由题意利用任意角的三角函数的定义,求得的值.
【题目详解】
∵的终边过点,若,
.
即答案为-2.
【答案点睛】
本题主要考查任意角的三角函数的定义和诱导公式,属基础题.
15、①②③
【答案解析】
由已知分别结合和差角的正切及正弦余弦公式进行化简即可求解.
【题目详解】
①∵tan60°=tan(25°+35°),
tan25°+tan35°tan25°tan35°;
tan25°tan35°,
,
②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),
=2sin60°;
③tan(45°+15°)=tan60°;
故答案为:①②③
【答案点睛】
本题主要考查了两角和与差的三角公式在三角化简求值中的应用,属于中档试题.
16、
【答案解析】
先对函数f(x)求导,再根据图象在(0,f(0))处切线的斜率为﹣4,得f′(0)=﹣4,由此可求a的值.
【题目详解】
由函数得,∵函数f(x)的图象在(0,f(0))处切线的斜率为﹣4,,.
故答案为4
【答案点睛】
本题考查了根据曲线上在某点切线方程的斜率求参数的问题,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)单调递减区间为,,无单调递增区间(2)证明见解析
【答案解析】
(1)求导,根据导数的正负判断单调性,
(2)整理,化简为,令,求的单调性,以及,即证.
【题目详解】
解:(1)函数定义域为,
则,令,,则,
当,,单调递减;当,,单调递增;
故,,
,,
故函数的单调递减区间为,,无单调递增区间.
(2)证明,即为,
因为,
即证,
令,则,
令,则,
当时,,所以在上单调递减,
则,,
则在上恒成立,
所以在上单调递减,
所以要证原不等式成立,只需证当时,,
令,,,可知对于恒成立,
即,即,
故,即证,
故原不等式得证.
【答案点睛】
本题考查利用导数研究函数的单调性,利用导数证明不等式,函数的最值问题,属于中档题.
18、(1);(2).
【答案解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可得出函数的单调递增区间;
(2)由得出,并求出的值,利用两角差的正弦公式可求出的值.
【题目详解】
(1)当时,
,
由,得,
因此,函数的单调递增区间为;
(2),,
,,,,
.
【答案点睛】
本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属中等题.
19、(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).
【答案解析】
(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,