分享
2023学年林芝地区一中高考冲刺模拟数学试题(含解析).doc
下载文档

ID:35319

大小:2.30MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 林芝 地区 一中 高考 冲刺 模拟 数学试题 解析
2023学年高考数学模拟测试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知向量,,则与共线的单位向量为( ) A. B. C.或 D.或 2.给出下列三个命题: ①“”的否定; ②在中,“”是“”的充要条件; ③将函数的图象向左平移个单位长度,得到函数的图象. 其中假命题的个数是( ) A.0 B.1 C.2 D.3 3.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为176,320,则输出的a为( ) A.16 B.18 C.20 D.15 4.某公园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共( )种 A. B. C. D. 5.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( ) A.6里 B.12里 C.24里 D.48里 6.已知集合A={x|–1<x<2},B={x|x>1},则A∪B= A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞) 7.若a>b>0,0<c<1,则 A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb 8.在空间直角坐标系中,四面体各顶点坐标分别为:.假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点.那么完成这个工作所需要走的最短路径长度是( ) A. B. C. D. 9.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( ) A.100 B.1000 C.90 D.90 10.的展开式中的系数是( ) A.160 B.240 C.280 D.320 11.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为( ) A. B. C. D. 12.已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知半径为4的球面上有两点,,球心为O,若球面上的动点C满足二面角的大小为,则四面体的外接球的半径为_________. 14.在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为______. 15.在三棱锥中,三条侧棱两两垂直,,则三棱锥外接球的表面积的最小值为________. 16.已知F为抛物线C:x2=8y的焦点,P为C上一点,M(﹣4,3),则△PMF周长的最小值是_____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,三棱柱的所有棱长均相等,在底面上的投影在棱上,且∥平面 (Ⅰ)证明:平面平面; (Ⅱ)求直线与平面所成角的余弦值. 18.(12分)已知函数 (1)若,试讨论的单调性; (2)若,实数为方程的两不等实根,求证:. 19.(12分)设函数f(x)=|x﹣a|+|x|(a>0). (1)若不等式f(x)﹣| x|≥4x的解集为{x|x≤1},求实数a的值; (2)证明:f(x). 20.(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线. (1)求曲线的方程; (2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值. 21.(12分)已知函数. (1)讨论的零点个数; (2)证明:当时,. 22.(10分)已知直线是曲线的切线. (1)求函数的解析式, (2)若,证明:对于任意,有且仅有一个零点. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案. 【题目详解】 因为,,则, 所以, 设与共线的单位向量为, 则, 解得 或 所以与共线的单位向量为或. 故选:D. 【答案点睛】 本题考查向量的坐标运算以及共线定理和单位向量的定义. 2、C 【答案解析】 结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案. 【题目详解】 对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题; 对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确; 对于命题③,将函数的图象向左平移个单位长度,可得到的图象,即命题③是假命题. 故假命题有①③. 故选:C 【答案点睛】 本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题. 3、A 【答案解析】 根据题意可知最后计算的结果为的最大公约数. 【题目详解】 输入的a,b分别为,,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,,,,,,,易得176和320的最大公约数为16, 故选:A. 【答案点睛】 本题考查的是利用更相减损术求两个数的最大公约数,难度较易. 4、B 【答案解析】 间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论. 【题目详解】 使用插空法,先排盆虞美人、盆郁金香有种, 然后将盆锦紫苏放入到4个位置中有种, 根据分步乘法计数原理有,扣除郁金香在两边, 排盆虞美人、盆郁金香有种, 再将盆锦紫苏放入到3个位置中有, 根据分步计数原理有, 所以共有种. 故选:B. 【答案点睛】 本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题. 5、C 【答案解析】 设第一天走里,则是以为首项,以为公比的等比数列,由题意得,求出(里,由此能求出该人第四天走的路程. 【题目详解】 设第一天走里,则是以为首项,以为公比的等比数列, 由题意得:, 解得(里, (里. 故选:C. 【答案点睛】 本题考查等比数列的某一项的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题. 6、C 【答案解析】 根据并集的求法直接求出结果. 【题目详解】 ∵ , ∴ , 故选C. 【答案点睛】 考查并集的求法,属于基础题. 7、B 【答案解析】 试题分析:对于选项A,,,,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B. 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 8、C 【答案解析】 将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解. 【题目详解】 将四面体沿着劈开,展开后如下图所示: 最短路径就是的边. 易求得, 由,知 , 由余弦定理知 其中, ∴ 故选:C 【答案点睛】 本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题. 9、A 【答案解析】 利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解 【题目详解】 由题意,支出在(单位:元)的同学有34人 由频率分布直方图可知,支出在的同学的频率为 . 故选:A 【答案点睛】 本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题. 10、C 【答案解析】 首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解. 【题目详解】 由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是. 故选:C 【答案点睛】 本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题. 11、B 【答案解析】 根据三角函数定义得到,故,再利用和差公式得到答案. 【题目详解】 ∵角的终边过点,∴,. ∴. 故选:. 【答案点睛】 本题考查了三角函数定义,和差公式,意在考查学生的计算能力. 12、A 【答案解析】 根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案. 【题目详解】 解:因为函数为偶函数, 所以函数的图象关于对称, 因为对任意, ,都有, 所以函数在上为减函数, 则, 解得:. 即实数的取值范围是. 故选:A. 【答案点睛】 本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 设所在截面圆的圆心为,中点为,连接, 易知即为二面角的平面角,可求出及,然后可判断出四面体外接球的球心在直线上,在中,,结合,可求出四面体的外接球的半径. 【题目详解】 设所在截面圆的圆心为,中点为,连接, OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,即为二面角的平面角, , 因为,所以是等腰直角三角形,, 在中,由cos60º=,得,由勾股定理,得:, 因为O1到A、B、C三的距离相等,所以,四面体外接球的球心在直线上, 设四面体外接球半径为, 在中,, 由勾股定理可得:,即,解得. 【答案点睛】 本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题. 14、2023 【答案解析】 根据条件先求出数列的通项,利用累加法进行求解即可. 【题目详解】 ,,, 下面求数列的通项, 由题意知,,, ,, , 数列是递增数列,且, 的最小值为. 故答案为:. 【答案点睛】 本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键.综合性较强,属于难题. 15、 【答案解析】 设,可表示出,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积. 【题目详解】 设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方.记外接球半径为, ∴ 当时,. 故答案为:. 【答案点睛】 本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和. 16、5 【答案解析】 △PMF的周长最小,即求最小,过

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开