分享
专题2 第5讲.docx
下载文档

ID:3531775

大小:27.49KB

页数:2页

格式:DOCX

时间:2024-05-20

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题2 第5讲 专题
学霸网 https://www.xue-ba.org 收集整理 第5讲 圆锥曲线的常规问题 例6 已知双曲线-=1(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥c,求双曲线的离心率e的取值范围. 审题破题 用a,b表示s可得关于a,b,c的不等式,进而转化成关于e的不等式,求e的范围. 解 设直线l的方程为+=1,即bx+ay-ab=0. 由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离d1=, 同理可得点(-1,0)到直线l的距离为d2=, 于是s=d1+d2==. 由s≥c,得≥c,即5a≥2c2, 可得5≥2e2,即4e4-25e2+25≤0, 解得≤e2≤5. 由于e>1,故所求e的取值范围是. 构建答题模板 第一步:提取.从题设条件中提取不等关系式; 第二步:解不等式.求解含有目标参数的不等式,得到不等式的解集; 第三步:下结论.根据不等式的解集,并结合圆锥曲线中几何量的范围,得到所求参数的取值范围; 第四步:回顾反思.根据题设条件给出的不等关系求参数的取值范围,要考虑圆锥曲线自身的一些几何意义,如离心率的范围,圆锥曲线定义中的a,b,c的大小关系等. 跟踪训练6 椭圆C的中心为坐标原点O,焦点在y轴上,短轴长为,离心率为,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A,B,且=3. (1)求椭圆C的方程; (2)求m的取值范围. 解 (1)设椭圆C的方程为+=1(a>b>0), 设c>0,c2=a2-b2,由题意,知2b=,=, 所以a=1,b=c=. 故椭圆C的方程为y2+=1,即y2+2x2=1. (2)设直线l的方程为y=kx+m(k≠0),l与椭圆C的交点坐标为A(x1,y1),B(x2,y2), 由得(k2+2)x2+2kmx+(m2-1)=0, Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0,(*) x1+x2=,x1x2=. 因为=3,所以-x1=3x2, 所以所以3(x1+x2)2+4x1x2=0. 所以3·2+4·=0. 整理得4k2m2+2m2-k2-2=0, 即k2(4m2-1)+(2m2-2)=0. 当m2=时,上式不成立;当m2≠时,k2=, 由(*)式,得k2>2m2-2, 又k≠0,所以k2=>0. 解得-1<m<-或<m<1. 即所求m的取值范围为∪. 第 2 页 共 2 页 学霸网 https://www.xue-ba.org 收集整理

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开