温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
甘肃省
庆阳
市镇
镇原
中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是
A.10 B.9 C.8 D.7
2.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( )
A. B.
C. D.
3.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是( )
A.45 B.50 C.55 D.60
4.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
A.23 B.21 C.35 D.32
5.关于函数在区间的单调性,下列叙述正确的是( )
A.单调递增 B.单调递减 C.先递减后递增 D.先递增后递减
6.由曲线y=x2与曲线y2=x所围成的平面图形的面积为( )
A.1 B. C. D.
7.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( )
A. B. C. D.
8.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为( )
A. B. C.2 D.
9.的展开式中的系数为( )
A.5 B.10 C.20 D.30
10.如图,平面与平面相交于,,,点,点,则下列叙述错误的是( )
A.直线与异面
B.过只有唯一平面与平行
C.过点只能作唯一平面与垂直
D.过一定能作一平面与垂直
11.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )
A. B. C. D.
12.若函数的图象过点,则它的一条对称轴方程可能是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
14.已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数__________.
15.在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为________.
16.设函数,当时,记最大值为,则的最小值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.
(Ⅰ)求的极坐标方程和曲线的参数方程;
(Ⅱ)求曲线的内接矩形的周长的最大值.
18.(12分)已知函数.
(1)若不等式有解,求实数的取值范围;
(2)函数的最小值为,若正实数,,满足,证明:.
19.(12分)己知函数.
(1)当时,求证:;
(2)若函数,求证:函数存在极小值.
20.(12分)在平面直角坐标系中,曲线,曲线的参数方程为
(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线、的极坐标方程;
(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积
21.(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、、成等比数列,.设数列的前项和为,且满足.
(1)求数列、的通项公式;
(2)令,证明:.
22.(10分)如图,已知四棱锥的底面是等腰梯形,,,,,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.
(1)求证:平面.
(2)求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.
【题目详解】
由抛物线标准方程可知p=2
因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知
所以
因为 为线段长度,都大于0,由基本不等式可知
,此时
所以选B
【答案点睛】
本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.
2、A
【答案解析】
设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.
【题目详解】
设椭圆的长半轴长为,双曲线的长半轴长为 ,
由椭圆和双曲线的定义得: ,
解得,设,
在中,由余弦定理得: ,
化简得,
即.
故选:A
【答案点睛】
本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.
3、D
【答案解析】
根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.
【题目详解】
根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,
∴样本容量(即该班的学生人数)是60(人).
故选:D.
【答案点睛】
本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题
4、B
【答案解析】
根据随机数表法的抽样方法,确定选出来的第5个个体的编号.
【题目详解】
随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.
故选:B
【答案点睛】
本小题主要考查随机数表法进行抽样,属于基础题.
5、C
【答案解析】
先用诱导公式得,再根据函数图像平移的方法求解即可.
【题目详解】
函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增.
故选:C
【答案点睛】
本题考查三角函数的平移与单调性的求解.属于基础题.
6、B
【答案解析】
首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.
【题目详解】
联立方程:可得:,,
结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:
.
本题选择B选项.
【答案点睛】
本题主要考查定积分的概念与计算,属于中等题.
7、D
【答案解析】
由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围
【题目详解】
解:由题意方程的实数根叫做函数的“新驻点”,
对于函数,由于,
,
设,该函数在为增函数,
, ,
在上有零点,
故函数的“新驻点”为,那么
故选:.
【答案点睛】
本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题..
8、C
【答案解析】
由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间
上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.
点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.
9、C
【答案解析】
由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.
【题目详解】
由已知,,因为展开式的通项为,所以
展开式中的系数为.
故选:C.
【答案点睛】
本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.
10、D
【答案解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.
【题目详解】
A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.
B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.
C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.
D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.
故选:D
【答案点睛】
本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.
11、A
【答案解析】
首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.
【题目详解】
样本空间样本点为个,
具体分析如下:
记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,
有以下3种位置1__ __,__1__,__ __1.
剩下2个空位可是0或1,这三种排列的所有可能分别都是,
但合并计算时会有重复,重复数量为,
事件的样本点数为:个.
故不同的样本点数为8个,.
故选:A
【答案点睛】
本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题
12、B
【答案解析】
把已知点坐标代入求出,然后验证各选项.
【题目详解】
由题意,,或,,
不妨取或,
若,则函数为,四个选项都不合题意,
若,则函数为,只有时,,即是对称轴.
故选:B.
【答案点睛】
本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、130. 15.
【答案解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.
【题目详解】
(1),顾客一次购买草莓和西瓜各一盒,需要支付元.
(2)设顾客一次购买水果的促销前总价为元,
元时,李明得到的金额为,符合要求.
元时,有恒成立,即,即元.
所以的最大值为.
【答案点睛】
本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.
14、
【答案解析】
由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率.注意对称性,问题应该有两解.
【题目详解】
直线过抛物线的焦点,,过,分别作的准线的垂线,垂足分别为,,由抛物线的定义知,.
因为,所以.因为,
所以,从而.