温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
甘肃省
武威市
一中
高考
适应性
考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,则不等式的解集是( )
A. B. C. D.
2.已知命题:,,则为( )
A., B.,
C., D.,
3.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为( )
A.-1 B.1 C. D.
4.执行如图所示的程序框图,则输出的结果为( )
A. B. C. D.
5.已知等差数列中,若,则此数列中一定为0的是( )
A. B. C. D.
6.设,随机变量的分布列是
0
1
则当在内增大时,( )
A.减小,减小 B.减小,增大
C.增大,减小 D.增大,增大
7.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为( )
A. B. C. D.
8.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )
A. B. C. D.
9.已知函数,若函数的所有零点依次记为,且,则( )
A. B. C. D.
10.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是( )
A. B.
C. D.
11.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为( )
A. B. C. D.
12.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则______________.
14.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.
15. “六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为________.
16.已知边长为的菱形中,,现沿对角线折起,使得二面角为,此时点,,,在同一个球面上,则该球的表面积为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.
18.(12分)如图,在正四棱锥中,,点、分别在线段、上,.
(1)若,求证:⊥;
(2)若二面角的大小为,求线段的长.
19.(12分)如图,在平面四边形中,,,.
(1)求;
(2)求四边形面积的最大值.
20.(12分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,点在直线上,且.
(1)证明:直线与圆相切;
(2)设与椭圆的另一个交点为,当的面积最小时,求的长.
21.(12分)如图,在四棱锥中,平面, 底面是矩形,,,分别是,的中点.
(Ⅰ)求证:平面;
(Ⅱ)设, 求三棱锥的体积.
22.(10分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,
(1)证明:直线的斜率是-1;
(2)若,,成等比数列,求直线的方程.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.
【题目详解】
函数,可得,
时,,单调递增,
∵,
故不等式的解集等价于不等式的解集.
.
∴.
故选:B.
【答案点睛】
本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.
2、C
【答案解析】
根据全称量词命题的否定是存在量词命题,即得答案.
【题目详解】
全称量词命题的否定是存在量词命题,且命题:,,
.
故选:.
【答案点睛】
本题考查含有一个量词的命题的否定,属于基础题.
3、D
【答案解析】
根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.
【题目详解】
如图所示:
因为是△的中位线,
所以到的距离等于△的边上高的一半,
所以,
由此可得,
当且仅当时,即为的中点时,等号成立,
所以,
由平行四边形法则可得,,
将以上两式相加可得,
所以,
又已知,
根据平面向量基本定理可得,
从而.
故选:D
【答案点睛】
本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.
4、D
【答案解析】
循环依次为
直至结束循环,输出
,选D.
点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.
5、A
【答案解析】
将已知条件转化为的形式,由此确定数列为的项.
【题目详解】
由于等差数列中,所以,化简得,所以为.
故选:A
【答案点睛】
本小题主要考查等差数列的基本量计算,属于基础题.
6、C
【答案解析】
,,判断其在内的单调性即可.
【题目详解】
解:根据题意在内递增,
,
是以为对称轴,开口向下的抛物线,所以在上单调递减,
故选:C.
【答案点睛】
本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题.
7、C
【答案解析】
根据等差数列的性质设出,,,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.
【题目详解】
由已知,,成等差数列,设,,.
由于,据勾股定理有,即,化简得;
由椭圆定义知的周长为,有,所以,所以;
在直角中,由勾股定理,,∴离心率.
故选:C
【答案点睛】
本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.
8、A
【答案解析】
列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.
【题目详解】
金、木、水、火、土任取两类,共有:
金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,
其中两类元素相生的有火木、火土、木水、水金、金土共5结果,
所以2类元素相生的概率为,故选A.
【答案点睛】
本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.
9、C
【答案解析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.
【题目详解】
令,得,即对称轴为.
函数周期,令,可得.则函数在上有8条对称轴.
根据正弦函数的性质可知,
将以上各式相加得:
故选:C.
【答案点睛】
本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.
10、D
【答案解析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.
【题目详解】
的定义域为,,
当时,,故在单调递减;
不妨设,而,知在单调递减,
从而对任意、,恒有,
即,
,,
令,则,原不等式等价于在单调递减,即,
从而,因为,
所以实数a的取值范围是
故选:D.
【答案点睛】
此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.
11、D
【答案解析】
试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.
考点:三角函数的图象与性质.
12、C
【答案解析】
将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设
根据椭圆的几何性质可得
,
根据双曲线的几何性质可得,
,
即
故答案为
14、
【答案解析】
Aa设正四棱柱的高为h得到故得到正四棱柱的体积为
故答案为54.
15、
【答案解析】
分步排课,首先将“礼”与“乐”排在前两节,然后,“射”和“御”捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列.
【题目详解】
第一步:先将“礼”与“乐”排在前两节,有种不同的排法;第二步:将“射”和“御”两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足“礼”与“乐”必须排在前两节,“射”和“御”两节讲座必须相邻的不同安排种数为.
故答案为:1.
【答案点睛】
本题考查排列的应用,排列组合问题中,遵循特殊元素特殊位置优先考虑的原则,相邻问题用捆绑法,不相邻问题用插入法.
16、
【答案解析】
分别取,的中点,,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,由勾股定理可得、,再根据球的面积公式计算可得;
【题目详解】
如图,分别取,的中点,,连接,
则易得,,,,
由图形的对称性可知球心必在的延长线上,
设球心为,半径为,,可得,解得,.
故该球的表面积为.
故答案为:
【答案点睛】
本题考查多面体的外接球的计算,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ);(Ⅱ)详见解析.
【答案解析】
(Ⅰ)由椭圆的定义可得,周长取最大值时,线段过点,可求出,从而求出椭圆的标准方程;
(Ⅱ)设直线,直线,,,,.把直线与直线的方程分别代入椭圆的方程,利用韦达定理和弦长公式求出和,根据求出的值.最后直线与直线的方程联立,求两直线的交点即得结论.
【题目详解】
(Ⅰ)设的周长为,
则
,当且仅当线段过点时“”成立.
,,又,,
椭圆的标准方程为.
(Ⅱ)若直线的斜率不存在,则直线的斜率也不存在,这与直线与直线相交于点矛盾,所以直线的斜率存在.
设,,,,,.
将直线的方程代入椭圆方程得:.
,,