概率统计——习题九参考答案9.1(1)0;(2)1/129.2设iX为第i部分的长度,10,,2,1=i,且它们独立同分布;205.0)(,2)(==iiXDXE;4714.01)63.0(2}05.0102101.2005.01021005.0102109.19{}1.0201.020{101101=−Φ≈××−≤××−≤××−=+≤≤−∑∑==iiiiXPXP9.3设iX为第i个加数的舍入误差,,,,i21=则iX在)5.0,5.0(−内服从均匀分布,且相互独立,.12/1)(,0)(==iiXDXE(1)]1)5/3(2[1}12/150015|)({|}15|{|*1500115001−Φ−≈>=>∑∑==iiiiXPXP=2(1−0.90988)=0.18024;(2)设最多可有n个数相加,则有1)n/1210(210}|XP{|0.9n1ii−Φ≈<≤∑=,即.95.0)12/10(≥Φn从而.45.443,645.112/10≤≥nn故n最大可取出443.9.4设iX为第i台车床开工数,)6.0,1(~BXi;则200台车床开工数)6.0,200(~2001BXYii∑==设供电为n千瓦的电能才能正常工作达99.9%%9.99}481204.06.02006.0200{}{≥−≤×××−=≤nYPnYP查表;999.0)1.3(=Φ故得1.348120≥−n,4774.141≥n即供电142千瓦电能以99.9%保证本车间正常工作。9.5设良种数为X,则X~B(n,p),其中n=6000,6/1=p,设不超过的界限为a,则应有99.0}616000{=≤−aXP,则由中心极限定理,得:1656160006000(2}65616000600065616000616000{}616000{−××Φ≈××≤×××−=≤−)aaXPaXP故有1656160006000(2−××Φ)a=0.99。查表得58.2656160006000=××a,解得a=0.0124.良种粒数X的范围为6000)0124.061(60000124.061×+≤≤×−X)(,即1075925≤≤X。9.6设任意时刻使用外线的分机数为X,则X~B(200,0.05);n=200,p=0.05设至少需要N条外线,由德莫佛-拉普拉斯定理有9.0)5.910()5.910(})1()1()1({}0{≥−Φ−−Φ≈−−≤−−<−−=≤