温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖南省
长沙市
芙蓉
铁路
第一
中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是( )
A. B. C. D.
2.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为( )
A. B. C. D.
3.已知函数,不等式对恒成立,则的取值范围为( )
A. B. C. D.
4.二项式展开式中,项的系数为( )
A. B. C. D.
5.已知全集,集合,,则阴影部分表示的集合是( )
A. B. C. D.
6.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为
A. B.
C. D.
7.己知全集为实数集R,集合A={x|x2 +2x-8>0},B={x|log2x<1},则等于( )
A.[4,2] B.[4,2) C.(4,2) D.(0,2)
8.已知等差数列满足,公差,且成等比数列,则
A.1 B.2 C.3 D.4
9.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是( )
A. B.
C. D.
10.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为( )
A. B. C. D.
11.设 ,则( )
A.10 B.11 C.12 D.13
12.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.函数的定义域为,其图象如图所示.函数是定义域为的奇函数,满足,且当时,.给出下列三个结论:
①;
②函数在内有且仅有个零点;
③不等式的解集为.
其中,正确结论的序号是________.
14.设,若函数有大于零的极值点,则实数的取值范围是_____
15.在边长为的菱形中,点在菱形所在的平面内.若,则_____.
16.在平面直角坐标系中,圆.已知过原点且相互垂直的两条直线和,其中与圆相交于,两点,与圆相切于点.若,则直线的斜率为_____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.
(1)求1名顾客摸球2次摸奖停止的概率;
(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.
18.(12分)如图,在四棱锥中底面是菱形,,是边长为的正三角形,,为线段的中点.
求证:平面平面;
是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由.
19.(12分)已知函数,其中为实常数.
(1)若存在,使得在区间内单调递减,求的取值范围;
(2)当时,设直线与函数的图象相交于不同的两点,,证明:.
20.(12分)已知集合,集合.
(1)求集合;
(2)若,求实数的取值范围.
21.(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.
(1)求的方程;
(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.
22.(10分)已知函数.
(1)当时,判断在上的单调性并加以证明;
(2)若,,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.
【题目详解】
由的图象知函数在区间单调递增,而,故由可知.故,
又有,综上得的取值范围是.
故选:C
【答案点睛】
本题考查了函数单调性和不等式的基础知识,属于中档题.
2、B
【答案解析】
延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.
【题目详解】
解:延长到,使,连接,则四边形为平行四边形,
则,,,
在中,
则,得,
.
故选:B.
【答案点睛】
本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.
3、C
【答案解析】
确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.
【题目详解】
是奇函数,
,
易知均为减函数,故且在上单调递减,
不等式,即,
结合函数的单调性可得,即,
设,,故单调递减,故,
当,即时取最大值,所以.
故选:.
【答案点睛】
本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.
4、D
【答案解析】
写出二项式的通项公式,再分析的系数求解即可.
【题目详解】
二项式展开式的通项为,令,得,故项的系数为.
故选:D
【答案点睛】
本题主要考查了二项式定理的运算,属于基础题.
5、D
【答案解析】
先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.
【题目详解】
由,,可得或,
又
所以.
故选:D.
【答案点睛】
本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.
6、D
【答案解析】
设胡夫金字塔的底面边长为,由题可得,所以,
该金字塔的侧棱长为,
所以需要灯带的总长度约为,故选D.
7、D
【答案解析】
求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.
【题目详解】
解:由x2 +2x-8>0,得x<-4或x>2,
∴A={x|x2 +2x-8>0}={x| x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={ x |0<x<2},
则,
∴.
故选:D.
【答案点睛】
本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.
8、D
【答案解析】
先用公差表示出,结合等比数列求出.
【题目详解】
,因为成等比数列,所以,解得.
【答案点睛】
本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.
9、D
【答案解析】
根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.
【题目详解】
由条件可得
函数关于直线对称;
在,上单调递增,且在时使得;
又
,,所以选项成立;
,比离对称轴远,
可得,选项成立;
,,可知比离对称轴远
,选项成立;
,符号不定,,无法比较大小,
不一定成立.
故选:.
【答案点睛】
本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.
10、C
【答案解析】
由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案.
【题目详解】
由双曲线与双曲线有相同的渐近线,
可得,解得,此时双曲线,
则曲线的离心率为,故选C.
【答案点睛】
本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.
11、B
【答案解析】
根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值.
【题目详解】
∵f(x),
∴f(5)=f[f(1)]
=f(9)=f[f(15)]
=f(13)=1.
故选:B.
【答案点睛】
本题主要考查了分段函数中求函数的值,属于基础题.
12、D
【答案解析】
讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.
【题目详解】
当时,,故,函数在上单调递增,在上单调递减,且;
当时,;
当时,,,函数单调递减;
如图所示画出函数图像,则,故.
故选:.
【答案点睛】
本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、①③
【答案解析】
利用奇函数和,得出函数的周期为,由图可直接判断①;利用赋值法求得,结合,进而可判断函数在内的零点个数,可判断②的正误;采用换元法,结合图象即可得解,可判断③的正误.综合可得出结论.
【题目详解】
因为函数是奇函数,所以,
又,所以,即,
所以,函数的周期为.
对于①,由于函数是上的奇函数,所以,,故①正确;
对于②,,令,可得,得,
所以,函数在区间上的零点为和.
因为函数的周期为,所以函数在内有个零点,分别是、、、、,故②错误;
对于③,令,则需求的解集,由图象可知,,所以,故③正确.
故答案为:①③.
【答案点睛】
本题考查函数的图象与性质,涉及奇偶性、周期性和零点等知识点,考查学生分析问题的能力和数形结合能力,属于中等题.
14、
【答案解析】
先求导数,求解导数为零的根,结合根的分布求解.
【题目详解】
因为,所以,令得,
因为函数有大于0的极值点,所以,即.
【答案点睛】
本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.
15、
【答案解析】
以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.
【题目详解】
解:连接设交于点以点为原点,
分别以直线为轴,建立如图所示的平面直角坐标系,
则:
设
得,
解得,
,
或,
显然得出的是定值,
取
则,
.
故答案为:.
【答案点睛】
本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.
16、
【答案解析】
设:,:,利用点到直线的距离,列出式子
,求出的值即可.
【题目详解】
解:由圆,可知圆心,半径为.
设直线:,则:,
圆心到直线的距离为,
,
.
圆心到直线的距离为半径,即,
并根据垂径定理的应用,可列式得到,
解得.
故答案为:.
【答案点睛】
本题主要考查点到直线的距离公式的运用,并结合圆的方程,垂径定理的基本知识,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)20.
【答案解析】
(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,即求概率;
(2)的可能取值为:0,10,20,30,1.分别求出取各个值时的概率,即可求出分布列和数学期望.
【题目详解】
(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,
所以1名顾客摸球2次摸奖停止的概率.
(2)的可能取值为:0,10,20,30,1.
,
∴随机变