温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
卢瑟福散射实验报告
2
卢瑟福
散射
实验
报告
实验报告
陈杨 PB05210097 物理二班
实验题目:卢瑟福散射实验
实验目的:
1.通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;
2.并学习应用散射实验研究物质结构的方法。
实验原理:
现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。
1.α粒子散射理论
(1)库仑散射偏转角公式
设原子核的质量为M,具有正电荷+Ze,并处于点O,而质量为m,能量为E,电荷为2e的α粒子以速度入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转角,如图3.3-1所示。图中是α粒子原来的速度,b是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。
图3.3-1 α粒子在原子核的库仑场中路径的偏转
当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。设α粒子最初的的动能和角动量分别为E和L,由能量和动量守恒定律可知:
(1)
(2)
由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b有如下关系:
(3)
设,则
(4)
这就是库仑散射偏转角公式。
(2)卢瑟福散射公式
在上述库仑散射偏转公式中有一个实验中无法测量的参数b,因此必须设法寻找一个可测量的量代替参数b的测量。
事实上,某个α粒子与原子散射的瞄准距离可大,可小,但是大量α粒子散射都具有一定的统计规律。由散射公式(4)可见,与b有对应关系,b大,就小,如图3.3-2所示。那些瞄准距离在b到之间的α粒子,经散射后必定向θ到之间的角度散出。因此,凡通过图中所示以b为内半径,以为外半径的那个环形的α粒子,必定散射到角到之间的一个空间圆锥体内。
图3.3-2 α粒子的散射角与瞄准距离和关系
设靶是一个很薄的箔,厚度为t,面积为s,则图3.3-1中的,一个α粒子被一个靶原子散射到方向、范围内的几率,也就是α粒子打在环上的概率,即
(5)
若用立体角表示,由于
(6)
为求得实际的散射的α粒子数,以便与实验进行比较,还必须考虑靶上的原子数和入射的α粒子数。
由于薄箔有许多原子核,每一个原子核对应一个这样的环,若各个原子核互不遮挡,设单位体积内原子数为,则体积内原子数为,α粒子打在这些环上的散射角均为,因此一个α粒子打在薄箔上,散射到方向且在内的概率为。
若单位时间有n个α粒子垂直入射到薄箔上,则单位时间内方向且在立体角内测得的α粒子为:
(7)
经常使用的是微分散射截面公式,微分散射截面
其物理意义为,单位面积内垂直入射一个粒子(n=1)时,被这个面积内一个靶原子()散射到角附近单位立体角内的概率。
因此,
(8)
这就是著名的卢瑟福散射公式。
代入各常数值,以E代表入射粒子的能量,得到公式:
(9)
其中,的单位为,E的单位为Mev。
2.卢瑟福理论的实验验证方法
为验证卢瑟福散射公式成立,即验证原子核式结构成立,实验中所用的核心仪器为探测器。
设探测器的灵敏度面对靶所张的立体角为,由卢瑟福散射公式可知在某段时间间隔内所观察到的α粒子总数应是:
(10)
式中为该时间内射到靶上的α粒子总数。由于式中、、等都是可测的,所以(10)式可和实验数据进行比较。由该式可见,在方面上内所观察到的α粒子数与散射靶的核电荷、α粒子动能及散射角等因素都有关。
对卢瑟福散射公式(9)或(10),可以从以下几个方面加以验证。
(1) 固定散射角,改变金靶的厚度,验证散射计数率与靶厚度的线性关系。
(2) 更换α粒子源以改变α粒子能量,验证散射计数率与α粒子能量的平方反比关系。
(3) 改变散射角,验证散射计数率与散射角的关系。这是卢瑟福散射击中最突出和最重要的特征。
(4) 固定散射角,使用厚度相等而材料不同的散射靶,验证散射计数率与靶材料核电荷数的平方关系。由于很难找到厚度相同的散射靶,而且需要对原子数密度进行修正,这一实验内容的难度较大。
本实验中,只涉及到第(3)方面的实验内容,这是对卢瑟福散射理论最有力的验证。
3.卢瑟福散射实验装置
卢瑟福散射实验装置包括散射真空室部分、电子学系统部分和步进电机的控制系统部分。实验装置的机械结构如图3.3-3所示。
图3.3-3 卢瑟福散射实验装置的机械结构
(1)散射真空室的结构
散射真空室中主要包括有放射源、散射样品台、粒子探测器、步进电机及转动机构等。放射源为或源,源主要的粒子能量为,源主要的粒子能量为。
(2)电子学系统结构
为测量粒子的微分散射截面,由式(9),需测量在不同角度出射粒子的计数率。所用的粒子探测器为金硅面垒Si(Au) 探测器,粒子探测系统还包括电荷灵敏前置放大器、主放大器、计数器、探测器偏置电源、NIM机箱与低压电源等。
(3)步进电机及其控制系统
在实验过程中,需在真空条件下测量不同散射角的出射粒子计数率,这样就需要经常地变换散射角度。在本实验装置中利用步进电机来控制散射角,可使实验过程变得极为方便。不用每测量一个角度的数据便打开真空室转换角度,只需在真空室外控制步进电机转动相应的角度即可;此外,由于步进电机具有定位准确的特性,简单的开环控制即可达到所需精确的控制。
实验内容:
1. 实验数据及其分析
(1)寻找=0的物理位置
在寻找0度的位置之前,先打开实验装置的顶盖,大概让放射源对准探测器,然后盖上顶盖,一个人用力压住顶盖,另一人打开真空泵,大概压住20~30秒后,顶盖无法推开时,可认为没有漏气现象.之后开始在正负五度之间找=0的物理位置.以下为显示的度数和两秒钟测得的粒子数:
-5
-4
-3
-2
-1
0
1
2
3
4
5
1870
2286
3213
3435
3995
4138
3849
3643
3151
2490
2326
由上表可见,在仪器显示的=0的位置粒子数最大,即我们要找的=0的物理位置.
偏转角度/
粒子个数n
时间t/s
单位时间粒子个数N/
比例系数/
动量N*k/kg*m/s
30
230
200
1.150
4.487
5.160
35
258
400
0.645
8.176
5.274
40
232
600
0.387
13.684
5.300
45
215
1000
0.215
21.447
4.611
50
316
2000
0.158
31.900
5.040
2.为了便于分析这些数据,数据由Origin分析得到图像:
(1) 在y轴大尺度下的曲线:
可见在=45度时,有较大的偏差,为了实验结果的精确,舍去该点,然后做图如下:
(2)在y轴精细尺度下的曲线:
(3)由表格做出曲线:
(4)综合有关条件,做出曲线:
以下为用Origin线性拟合的数据:
[2007/4/5 19:59 "/Graph4" (2454195)]
Linear Regression for Data1_E:
Y = A + B * X
Parameter Value Error
------------------------------------------------------------
A -0.00802 0.01308
B 0.00523 1.08172E-4
------------------------------------------------------------
R SD N P
------------------------------------------------------------
0.99936 0.01672 5 <0.0001
------------------------------------------------------------
由线性拟合相关系数R=0.99936可知,非常接近于1,可见,基本上为一常数。
3.结果及误差分析:
可见以上得到的数据和由Origin得到的图象,都有力地验证了卢瑟福公式,验证了散射计数率与散射角的关系,也验证了为一常数。当然在排除了较大误差的情况下。本试验在45度出现了一个较大误差,愿意可能是阈值选得太低,即在实验中数据的波动性会增大。
4.思考题
(1)根据卢瑟福公式应为常数,本实验的结果有偏差吗?试分析原因。
答:本试验的结果有一些偏差,原因如下:
1.在小角度条件下,由于有多层散射物,造成粒子的二次甚至多次散射,这应该是造成实验误差的最大原因。
2.在调电机的过程中,由于电机转动度数的不精确,=0确定只是近似的而不可能绝对的准确。
3.实验中选取在不同角度下接受粒子的时间尺度随偏离角度增大而增大,目的是为了减小误差,但时间又不可能趋于无穷大,故总共接受的粒子数会有一定的偏差。
4.阈值太低,有可能把一些杂散信号也计数;阙值太高,则相反。
5.由于是用手压住来抽气,难免会有漏气现象,即使有头发丝大小的气孔,也会影响实验的真空度。
6.所用的仪器有一定误差。这些误差是难免的。