分享
2023学年甘肃省靖远县高考冲刺数学模拟试题(含解析).doc
下载文档

ID:34984

大小:2.09MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 甘肃省 靖远县 高考 冲刺 数学模拟 试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知实数,,函数在上单调递增,则实数的取值范围是( ) A. B. C. D. 2.如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为( ) A.12 B. C. D. 3.已知函数,,其中为自然对数的底数,若存在实数,使成立,则实数的值为( ) A. B. C. D. 4.已知满足,,,则在上的投影为(    ) A. B. C. D.2 5.若执行如图所示的程序框图,则输出的值是( ) A. B. C. D.4 6.已知等边△ABC内接于圆:x2+ y2=1,且P是圆τ上一点,则的最大值是( ) A. B.1 C. D.2 7.已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是( ) ①与点距离为的点形成一条曲线,则该曲线的长度是; ②若面,则与面所成角的正切值取值范围是; ③若,则在该四棱柱六个面上的正投影长度之和的最大值为. A. B. C. D. 8.已知曲线且过定点,若且,则的最小值为( ). A. B.9 C.5 D. 9.设,,,则,,三数的大小关系是 A. B. C. D. 10.命题“”的否定是( ) A. B. C. D. 11.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为( ) A. B. C. D. 12.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为(  ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知是等比数列,且,,则__________,的最大值为__________. 14.若实数满足约束条件,设的最大值与最小值分别为,则_____. 15.曲线在处的切线方程是_________. 16.已知是定义在上的偶函数,其导函数为.若时,,则不等式的解集是___________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且. (Ⅰ)求椭圆的标准方程; (Ⅱ)设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围. 18.(12分)已知椭圆 的左焦点为F,上顶点为A,直线AF与直线 垂直,垂足为B,且点A是线段BF的中点. (I)求椭圆C的方程; (II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线 交于点Q,且,求点P的坐标. 19.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1)写出直线的普通方程和曲线的直角坐标方程; (2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值. 20.(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为. (1)写出直线的参数方程,并将曲线的方程化为直角坐标方程; (2)若曲线与直线相交于不同的两点,求的取值范围. 21.(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图. (1)求直方图中的值,并估计销量的中位数; (2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量. 22.(10分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点. Ⅰ求证:平面PBD; Ⅱ求证:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案. 【题目详解】 解:根据题意,函数在上单调递增, 当,若为增函数,则①, 当, 若为增函数,必有在上恒成立, 变形可得:, 又由,可得在上单调递减,则, 若在上恒成立,则有②, 若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值, 则需有,③ 联立①②③可得:. 故选:D. 【答案点睛】 本题考查函数单调性的性质以及应用,注意分段函数单调性的性质. 2、C 【答案解析】 过作于,连接,易知,,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可. 【题目详解】 在和中,,所以,则, 过作于,连接,显然,则,且, 又因为,所以平面, 所以, 当最大时,取得最大值,取的中点,则, 所以, 因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8, 所以的最大值为椭圆的短轴长的一半,故最大值为, 所以最大值为,故的最大值为. 故选:C. 【答案点睛】 本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题. 3、A 【答案解析】 令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x, 令y=x﹣ln(x+1),y′=1﹣=, 故y=x﹣ln(x+1)在(﹣1,﹣1)上是减函数,(﹣1,+∞)上是增函数, 故当x=﹣1时,y有最小值﹣1﹣0=﹣1, 而ex﹣a+4ea﹣x≥4,(当且仅当ex﹣a=4ea﹣x,即x=a+ln1时,等号成立); 故f(x)﹣g(x)≥3(当且仅当等号同时成立时,等号成立); 故x=a+ln1=﹣1,即a=﹣1﹣ln1.故选:A. 4、A 【答案解析】 根据向量投影的定义,即可求解. 【题目详解】 在上的投影为. 故选:A 【答案点睛】 本题考查向量的投影,属于基础题. 5、D 【答案解析】 模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论. 【题目详解】 ;如此循环下去,当时,,此时不满足,循环结束,输出的值是4. 故选:D. 【答案点睛】 本题考查程序框图,考查循环结构.解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论. 6、D 【答案解析】 如图所示建立直角坐标系,设,则,计算得到答案. 【题目详解】 如图所示建立直角坐标系,则,,,设, 则 . 当,即时等号成立. 故选:. 【答案点睛】 本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键. 7、C 【答案解析】 ①与点距离为的点形成以为圆心,半径为的圆弧,利用弧长公式,可得结论;②当在(或时,与面所成角(或的正切值为最小,当在时,与面所成角的正切值为最大,可得正切值取值范围是;③设,,,则,即,可得在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和. 【题目详解】 如图: ①错误, 因为 ,与点距离为的点形成以为圆心,半径为的圆弧,长度为; ②正确,因为面面,所以点必须在面对角线上运动,当在(或)时,与面所成角(或)的正切值为最小(为下底面面对角线的交点),当在时,与面所成角的正切值为最大,所以正切值取值范围是; ③正确,设,则,即,在前后、左右、上下面上的正投影长分别为,,,所以六个面上的正投影长度之,当且仅当在时取等号. 故选:. 【答案点睛】 本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题. 8、A 【答案解析】 根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值. 【题目详解】 定点为, , 当且仅当时等号成立, 即时取得最小值. 故选:A 【答案点睛】 本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型. 9、C 【答案解析】 利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可. 【题目详解】 由, , , 所以有.选C. 【答案点睛】 本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化. 10、D 【答案解析】 根据全称命题的否定是特称命题,对命题进行改写即可. 【题目详解】 全称命题的否定是特称命题,所以命题“,”的否定是:,. 故选D. 【答案点睛】 本题考查全称命题的否定,难度容易. 11、B 【答案解析】 利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可. 【题目详解】 如图,,设为的中点,为的中点, 由图可知过且与平行的平面为平面,所以直线即为直线, 由题易知,的补角,分别为, 设三棱柱的棱长为2, 在中,, ; 在中,, ; 在中,, , . 故选:B 【答案点睛】 本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养. 12、A 【答案解析】 每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率. 【题目详解】 派四位专家对三个县区进行调研,每个县区至少派一位专家 基本事件总数: 甲,乙两位专家派遣至同一县区包含的基本事件个数: 甲,乙两位专家派遣至同一县区的概率为: 本题正确选项: 【答案点睛】 本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、5 【答案解析】 ,即的最大值为 14、 【答案解析】 画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值. 【题目详解】 画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以. 【答案点睛】 本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题. 15、 【答案解析】 利用导数的运算法则求出导函数,再利用导数的几何意义即可求解. 【题目详解】 求导得, 所以,所以切线方程为 故答案为: 【答案点睛】 本题考查了基本初等函数的导数、导数的运算法则以及导数的几何意义,属于基础题. 16、 【答案解析】 构造,先利用定义判断的奇偶性,再利用导

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开