大半
导体
181
PPT
基础知识
培训
常用
半导体器件
讲解
(1-1),1.1 半导体基础知识,1.2 半导体二极管,1.3 双极型三极管,1.5 单结晶体管和晶闸管,1.4 场效应管,第一章 常用半导体器件,1.6 集成电路中的元器件,(1-2),1.1.1 导体、半导体和绝缘体,自然界中很容易导电的物质称为导体,金属一般都是导体。,有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、塑料和石英。,另有一类物质的导电特性处于导体和绝缘体之间,称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物等。,1.1 半导体基础知识,(1-3),半导体的导电机理不同于其它物质,所以它具有不同于其它物质的特点。比如:热敏性、光敏性、掺杂性。,当受外界热和光的作用时,它的导电能力明显变化。,往纯净的半导体中掺入某些杂质,会使它的导电能力明显改变。,(1-4),1.1.2 本征半导体,现代电子学中,用的最多的半导体是硅和锗,它们的最外层电子(价电子)都是四个。,(1-5),通过一定的工艺过程,可以将半导体制成晶体。,完全纯净的、结构完整的半导体晶体,称为本征半导体。,在硅和锗晶体中,原子按四角形系统组成晶体点阵,每个原子都处在正四面体的中心,而四个其它原子位于四面体的顶点,每个原子与其相临的原子之间形成共价键,共用一对价电子。,(1-6),硅和锗的晶体结构,(1-7),本征半导体的导电机理,本征半导体中存在数量相等的两种载流子,即自由电子和空穴。,温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度是影响半导体性能的一个重要的外部因素,这是半导体的一大特点。,本征半导体的导电能力取决于载流子的浓度。,(1-8),在其它力的作用下,空穴吸引临近的电子来填补,这样的结果相当于空穴的迁移,而空穴的迁移相当于正电荷的移动,因此可以认为空穴是载流子。,本征半导体的导电机理,(1-9),硅和锗的共价键结构,共价键共用电子对,+4表示除去价电子后的原子,(1-10),共价键中的两个电子被紧紧束缚在共价键中,称为束缚电子,常温下束缚电子很难脱离共价键成为自由电子,因此本征半导体中的自由电子很少,所以本征半导体的导电能力很弱。,形成共价键后,每个原子的最外层电子是八个,构成稳定结构。,共价键有很强的结合力,使原子规则排列,形成晶体。,(1-11),本征半导体的导电机理,在绝对0度(T=0K)和没有外界激发时,价电子完全被共价键束缚着,本征半导体中没有可以运动的带电粒子(即载流子),它的导电能力为0,相当于绝缘体。,在常温下,由于热激发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下一个空位,称为空穴。,(1-12),本征半导体的导电机理,自由电子,空穴,束缚电子,(1-13),1.1.3 杂质半导体,在本征半导体中掺入某些微量的杂质,就会使半导体的导电性能发生显著变化。,其原因是掺杂半导体的某种载流子浓度大大增加。,使自由电子浓度大大增加的杂质半导体称为N型半导体(电子半导体),使空穴浓度大大增加的杂质半导体称为P型半导体(空穴半导体)。,(1-14),N型半导体,在硅或锗晶体中掺入少量的五价元素磷(或锑),晶体点阵中的某些半导体原子被杂质取代,磷原子的最外层有五个价电子,其中四个与相临的半导体原子形成共价键,必定多出一个电子,这个电子几乎不受束缚,很容易被激发而成为自由电子,这样磷原子就成了不能移动的带正电的离子。每个磷原子给出一个电子,称为施主原子。,(1-15),N型半导体,多余电子,磷原子,(1-16),N型半导体,N型半导体中的载流子是什么?,1、由施主原子提供的电子,浓度与施主原子相同。,2、本征半导体中成对产生的电子和空穴。,3、掺杂浓度远大于本征半导体中载流子浓度,所以,自由电子浓度远大于空穴浓度。自由电子称为多数载流子(多子),空穴称为少数载流子(少子)。,(1-17),P型半导体,在硅或锗晶体中掺入少量的三价元素,如硼(或铟),晶体点阵中的某些半导体原子被杂质取代,硼原子的最外层有三个价电子,与相临的半导体原子形成共价键时,产生一个空穴。这个空穴可能吸引束缚电子来填补,使得硼原子成为不能移动的带负电的离子。由于硼原子接受电子,所以称为受主原子。,(1-18),空穴,P型半导体,硼原子,(1-19),总 结,1、N型半导体中电子是多子,其中大部分是掺杂提供的电子,本征半导体中受激产生的电子只占少数。N型半导体中空穴是少子,少子的迁移也能形成电流,由于数量的关系,起导电作用的主要是多子。近似认为多子与杂质浓度相等。,2、P型半导体中空穴是多子,电子是少子。,(1-20),杂质半导体的示意表示法,(1-21),一.PN 结的形成,在同一片半导体基片上,分别制造P型半导体和N型半导体,经过载流子的扩散,在它们的交界面处就形成了PN结。,1.1.3 PN结,(1-22),P型半导体,N型半导体,空间电荷区,PN结处载流子的运动,(1-23),扩散的结果是使空间电荷区逐渐加宽,空间电荷区越宽。,内电场越强,就使漂移运动越强,而漂移使空间电荷区变薄。,(1-24),所以扩散和漂移这一对相反的运动最终达到平衡,相当于两个区之间没有电荷运动,空间电荷区的厚度固定不变。,(1-25),空间电荷区,N型区,P型区,电位V,V0,(1-26),1、空间电荷区中没有载流子。,2、空间电荷区中内电场阻碍P中的空穴、N中的电子(都是多子)向对方运动(扩散运动)。,3、P中的电子和N中的空穴(都是少子),数量有限,因此由它们形成的电流很小。,请注意,(1-27),二.PN结的单向导电性,PN结加上正向电压、正向偏置的意思都是:P区加正、N区加负电压。,PN结加上反向电压、反向偏置的意思都是:P区加负、N区加正电压。,(1-28),PN结正向偏置,P,N,+,_,内电场被削弱,多子的扩散加强能够形成较大的扩散电流。,(1-29),PN结反向偏置,N,P,+,_,内电场被被加强,多子的扩散受抑制。少子漂移加强,但少子数量有限,只能形成较小的反向电流。,(1-30),(1-31),三.PN结的电流方程,(1.1.2),(1.1.3),(1-32),四.PN结的伏安特性,死区电压 硅管0.6V,锗管0.2V。,导通压降:硅管0.60.7V,锗管0.20.3V。,反向击穿电压U(BR),(1-33),五.PN结的电容效应,二极管的两极之间有电容,此电容由两部分组成:势垒电容CB和扩散电容CD。,势垒区是积累空间电荷的区域,当电压变化时,就会引起积累在势垒区的空间电荷的变化,这样所表现出的电容是势垒电容。,(1-34),(a)势垒电容CB,势垒电容示意图,(1-35),(b)扩散电容CD,扩散电容示意图,(1-36),为了形成正向电流(扩散电流),注入P区的少子(电子)在P区有浓度差,越靠近PN结浓度越大,即在P区有电子的积累。同理,在N区有空穴的积累。正向电流大,积累的电荷多。,这样所产生的电容就是扩散电容CD。,(1-37),CB在正向和反向偏置时均不能忽略。而反向偏置时,载流子很少,扩散电容可忽略。,PN结高频小信号时的等效电路:,势垒电容和扩散电容的综合效应,(1-38),1.2.1 半导体二极管的结构,在PN结上加上引线和封装,就成为一个二极管。二极管按结构分有点接触型、面接触型和平面型三大类。,(1)点接触型二极管,PN结面积小,结电容小,用于检波和变频等高频电路。,(1-39),点接触结构,PN结加上管壳和引线,就成为半导体二极管。,点接触型,(1-40),(3)平面型二极管,往往用于集成电路制造艺中。PN 结面积可大可小,用于高频整流和开关电路中。,(2)面接触型二极管,PN结面积大,用于工频大电流整流电路。,(b)面接触型,(4)二极管的代表符号,