温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2016
全国
统一
高考
数学试卷
理科
新课
解析
2016年全国统一高考数学试卷(理科)(新课标Ⅲ)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=( )
A.[2,3] B.(﹣∞,2]∪[3,+∞)
C.[3,+∞) D.(0,2]∪[3,+∞)
2.(5分)若z=1+2i,则=( )
A.1 B.﹣1 C.i D.﹣i
3.(5分)已知向量=(,),=(,),则∠ABC=( )
A.30° B.45° C.60° D.120°
4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是( )
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个
5.(5分)若tanα=,则cos2α+2sin2α=( )
A. B. C.1 D.
6.(5分)已知a=,b=,c=,则( )
A.b<a<c B.a<b<c C.b<c<a D.c<a<b
7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=( )
A.3 B.4 C.5 D.6
8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于( )
A. B. C.﹣ D.﹣
9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )
A.18+36 B.54+18 C.90 D.81
10.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B. C.6π D.
11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )
A. B. C. D.
12.(5分)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有( )
A.18个 B.16个 C.14个 D.12个
二、填空题:本大题共4小题,每小题5分.
13.(5分)若x,y满足约束条件,则z=x+y的最大值为 .
14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移 个单位长度得到.
15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是 .
16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|= .
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(12分)已知数列{an}的前n项和Sn=1+λan,其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)若S5=,求λ.
18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1﹣7分别对应年份2008﹣2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:yi=9.32,tiyi=40.17,=0.55,≈2.646.
参考公式:相关系数r=,
回归方程=+t中斜率和截距的最小二乘估计公式分别为:
=,=﹣.
19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.
20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.
(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.
21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.
(Ⅰ)求f′(x);
(Ⅱ)求A;
(Ⅲ)证明:|f′(x)|≤2A.
请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]
22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.
(1)若∠PFB=2∠PCD,求∠PCD的大小;
(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.
[选修4-4:坐标系与参数方程]
23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
[选修4-5:不等式选讲]
24.已知函数f(x)=|2x﹣a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.
2016年全国统一高考数学试卷(理科)(新课标Ⅲ)
参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=( )
A.[2,3] B.(﹣∞,2]∪[3,+∞) C.[3,+∞) D.(0,2]∪[3,+∞)
【考点】1E:交集及其运算.菁优网版权所有
【专题】37:集合思想;4O:定义法;5J:集合.
【分析】求出S中不等式的解集确定出S,找出S与T的交集即可.
【解答】解:由S中不等式解得:x≤2或x≥3,即S=(﹣∞,2]∪[3,+∞),
∵T=(0,+∞),
∴S∩T=(0,2]∪[3,+∞),
故选:D.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
2.(5分)若z=1+2i,则=( )
A.1 B.﹣1 C.i D.﹣i
【考点】A5:复数的运算.菁优网版权所有
【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.
【分析】利用复数的乘法运算法则,化简求解即可.
【解答】解:z=1+2i,则===i.
故选:C.
【点评】本题考查复数的代数形式混合运算,考查计算能力.
3.(5分)已知向量=(,),=(,),则∠ABC=( )
A.30° B.45° C.60° D.120°
【考点】9S:数量积表示两个向量的夹角.菁优网版权所有
【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.
【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC的值.
【解答】解:,;
∴;
又0°≤∠ABC≤180°;
∴∠ABC=30°.
故选:A.
【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角.
4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是( )
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个
【考点】F4:进行简单的合情推理.菁优网版权所有
【专题】31:数形结合;4A:数学模型法;5M:推理和证明.
【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可.
【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确
B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确
C.三月和十一月的平均最高气温基本相同,都为10°,正确
D.平均最高气温高于20℃的月份有7,8两个月,故D错误,
故选:D.
【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.
5.(5分)若tanα=,则cos2α+2sin2α=( )
A. B. C.1 D.
【考点】GF:三角函数的恒等变换及化简求值.菁优网版权所有
【专题】11:计算题;35:转化思想;4R:转化法;56:三角函数的求值.
【分析】将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.
【解答】解:∵tanα=,
∴cos2α+2sin2α====.
故选:A.
【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题.
6.(5分)已知a=,b=,c=,则( )
A.b<a<c B.a<b<c C.b<c<a D.c<a<b
【考点】4Y:幂函数的单调性、奇偶性及其应用.菁优网版权所有
【专题】35:转化思想;4R:转化法;51:函数的性质及应用.
【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.
【解答】解:∵a==,
b=,
c==,
综上可得:b<a<c,
故选:A.
【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.
7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=( )
A.3 B.4 C.5 D.6
【考点】EF:程序框图.菁优网版权所有
【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.
【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.
【解答】解:模拟执行程序,可得
a=4,b=6,n=0,s=0
执行循环体,a=2,b=4,a=6,s=6,n=1
不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2
不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3
不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4
满足条件s>16,退出循环,输出n的值为4.
故选:B.
【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.
8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于( )
A. B. C.﹣ D.﹣
【考点】HT:三角形中的几何计算.菁优网版权所有
【专题】35:转化思想;44:数形结合法;58:解三角形.
【分析】作出图形,令∠DAC=θ,依题意,可求得cosθ===,sinθ=,利用两角和的余弦即可求得答案.
【解答】解:设△ABC中角A、B、C、对应的边分别为a、b、c,AD⊥BC于D,令∠DAC=θ,
∵在△ABC中,B=,BC边上的高AD=h=BC=a,
∴BD=AD=a,CD=a,
在Rt△ADC中,cosθ===,故sinθ=,
∴cosA=cos(+θ)=coscosθ﹣sinsinθ=×﹣×=﹣.
故选:C.
【点评】本题考查解三角形中,作出图形,令∠DAC=θ,利用两角和的余弦求cosA是关键,也是亮点,属于中档题.
9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )
A.18+36 B.54+18 C.90 D.81
【考点】L!:由三视图求面积、体积.菁优网版权所有
【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.
【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.
【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,
其底面面积为:3×6=18,
侧面的面积为:(3×3+3×)×2=18+18,
故棱柱的表面积为:18×2+18+18=54+18.
故选:B.
【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.
10.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B. C.6π D.
【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有
【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.
【分析】根据已知可得直三棱柱ABC﹣A1B1C1的内切球半径为,代入球的体积公式,可得答案.
【解答】解:∵AB⊥BC,AB=6,BC=8,
∴AC=10.
故三角形ABC的内切圆半径r==2,
又由AA1=3,
故直三棱柱ABC﹣A1B1C1的内切球半径为,
此时V的最大值=,
故选:B.
【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.
11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )
A. B. C. D.
【考点】K4:椭圆的性质.菁优网版权所有
【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.
【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.
【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),
设直线AE的方程为y=k(x+a),
令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),
设OE的中点为H,可得H(0,),
由B,H,M三点共线,可得kBH=kBM,
即为=,
化简可得=,即为a=3c,
可得e==.
另解:由△AMF∽△AEO,
可得=,
由△BOH∽△BFM,
可得==,
即有=即a=3c,
可得e==.
故选:A.
【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.
12.(5分)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有( )
A.18个 B.16个 C.14个 D.12个
【考点】8B:数列的应用.菁优网版权所有
【专题】16:压轴题;23:新定义;38:对应思想;4B:试验法.
【分析】由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.
【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:
0,0,0,0,1,1,1,1; 0,0,0,1,0,1,1,1; 0,0,0,1,1,0,1,1; 0,0,0,1,1,1,0,1; 0,0,1,0,0,1,1,1;
0,0,1,0,1,0,1,1; 0,0,1,0,1,1,0,1; 0,0,1,1,0,1,0,1; 0,0,1,1,0,0,1,1; 0,1,0,0,0,1,1,1;
0,1,0,0,1,0,1,1; 0,1,0,0,1,1,0,1; 0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,1.共14个.
故选:C.
【点评】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.
二、填空题:本大题共4小题,每小题5分.
13.(5分)若x,y满足约束条件,则z=x+y的最大值为 .
【考点】7C:简单线性规划.菁优网版权所有
【专题】59:不等式的解法及应用.
【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.
【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,
由得D(1,),
所以z=x+y的最大值为1+;
故答案为:.
【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.
14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移 个单位长度得到.
【考点】HJ:函数y=Asin(ωx+φ)的图象变换.菁优网版权所有
【专题】33:函数思想;4R:转化法;57:三角函数的图像与性质.
【分析】令f(x)=sinx+cosx=2sin(x+),则f(x﹣φ)=2sin(x+﹣φ),依题意可得2sin(x+﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.
【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),
∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),
令2sin(x+﹣φ)=2sin(x﹣),
则﹣φ=2kπ﹣(k∈Z),
即φ=﹣2kπ(k∈Z),
当k=0时,正数φmin=,
故答案为:.
【点评】本题考查函数y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,也是难点,属于中档题.
15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是 2x+y+1=0 .
【考点】6H:利用导数研究曲线上某点切线方程.菁优网版权所有
【专题】34:方程思想;51:函数的性质及应用;52:导数的概念及应用.
【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.
【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),
当x<0时,f(x)=ln(﹣x)+3x,即有
x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,
可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,
则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),
即为2x+y+1=0.
故答案为:2x+y+1=0.
【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.
16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|= 4 .
【考点】J8:直线与圆相交的性质.菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5B:直线与圆.
【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.
【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,
∴=3,
∴m=﹣
∴直线l的倾斜角为30°,
∵过A,B分别作l的垂线与x轴交于C,D两点,
∴|CD|==4.
故答案为:4.
【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(12分)已知数列{an}的前n项和Sn=1+λan,其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)若S5=,求λ.
【考点】87:等比数列的性质;8H:数列递推式.菁优网版权所有
【专题】34:方程思想;4R:转化法;54:等差数列与等比数列.
【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.
(2)根据条件建立方程关系进行求解就可.
【解答】解:(1)∵Sn=1+λan,λ≠0.
∴an≠0.
当n≥2时,an=Sn﹣Sn﹣1=1+λan﹣1﹣λan﹣1=λan﹣λan﹣1,
即(λ﹣1)an=λan﹣1,
∵λ≠0,an≠0.∴λ﹣1≠0.即λ≠1,
即=,(n≥2),
∴{an}是等比数列,公比q=,
当n=1时,S1=1+λa1=a1,
即a1=,
∴an=•()n﹣1.
(2)若S5=,
则若S5=1+λ[•()4]=,
即()5=﹣1=﹣,
则=﹣,得λ=﹣1.
【点评】本题主要考查数列递推关系的应用,根据n≥2时,an=Sn﹣Sn﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.
18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1﹣7分别对应年份2008﹣2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:yi=9.32,tiyi=40.17,=0.55,≈2.646.
参考公式:相关系数r=,
回归方程=+t中斜率和截距的最小二乘估计公式分别为:
=,=﹣.
【考点】BK:线性回归方程.菁优网版权所有
【专题】11:计算题;35:转化思想;5I:概率与统计.
【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;
(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量.
【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:
∵r==≈≈≈0.993,
∵0.993>0.75,
故y与t之间存在较强的正相关关系;
(2)==≈≈0.103,
=﹣≈1.331﹣0.103×4≈0.92,
∴y关于t的回归方程=0.10t+0.92,
2016年对应的t值为9,
故=0.10×9+0.92=1.82,
预测2016年我国生活垃圾无害化处理量为1.82亿吨.
【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.
19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.
【考点】LS:直线与平面平行;MI:直线与平面所成的角.菁优网版权所有
【专题】15:综合题;35:转化思想;44:数形结合法;5F:空间位置关系与距离;5G:空间角.
【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;
法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;
(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.
【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,
∵N为PC的中点,
∴NG∥BC,且NG=,
又AM=,BC=4,且AD∥BC,
∴AM∥BC,且AM=BC,
则NG∥AM,且NG=AM,
∴四边形AMNG为平行四边形,则NM∥AG,
∵AG⊂平面PAB,NM⊄平面PAB,
∴MN∥平面PAB;
法二、
在△PAC中,过N作NE⊥AC,垂足为E,连接ME,
在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,
∵AD∥BC,
∴cos,则sin∠EAM=,
在△EAM中,
∵AM=,AE=,
由余弦定理得:EM==,
∴cos∠AEM=,
而在△ABC中,cos∠BAC=,
∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,
∴AB∥EM,则EM∥平面PAB.
由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,
∴NE∥PA,则NE∥平面PAB.
∵NE∩EM=E,
∴平面NEM∥平面PAB,则MN∥平面PAB;
(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.
∴AM2+MC2=AC2,则AM⊥MC,
∵PA⊥底面ABCD,PA⊂平面PAD,
∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,
∴CM⊥平面PAD,则平面PNM⊥平面PAD.
在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.
在Rt△PAC中,由N是PC的中点,得AN==,
在Rt△PAM中,由PA•AM=PM•AF,得AF=,
∴sin.
∴直线AN与平面PMN所成角的正弦值为.
【点评】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.
20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.
(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.
【考点】J3:轨迹方程;K8:抛物线的性质.菁优网版权所有
【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.
【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;
(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.
【解答】(Ⅰ)证明:连接RF,PF,
由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,
∴∠PFQ=90°,
∵R是PQ的中点,
∴RF=RP=RQ,
∴△PAR≌△FAR,
∴∠PAR=∠FAR,∠PRA=∠FRA,
∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,
∴∠FQB=∠PAR,
∴∠PRA=∠PQF,
∴AR∥FQ.
(Ⅱ)设A(x1,y1),B(x2,y2),
F(,0),准线为 x=﹣,
S△PQF=|PQ|=|y1﹣y2|,
设直线AB与x轴交点为N,
∴S△ABF=|FN||y1﹣y2|,
∵△PQF的面积是△ABF的面积的两倍,
∴2|FN|=1,∴xN=1,即N(1,0).
设AB中点为M(x,y),由得=2(x1﹣x2),
又=,
∴=,即y2=x﹣1.
∴AB中点轨迹方程为y2=x﹣1.
【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.
21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.
(Ⅰ)求f′(x);
(Ⅱ)求A;
(Ⅲ)证明:|f′(x)|≤2A.
【考点】6B:利用导数研究函数的单调性.菁优网版权所有
【专题】32:分类讨论;35:转化思想;4J:换元法;51:函数的性质及应用;53:导数的综合应用;56:三角函数的求值.
【分析】(Ⅰ)根据复合函数的导数公式进行求解即可求f′(x);
(Ⅱ)讨论a的取值,利用分类讨论的思想方法,结合换元法,以及一元二次函数的最值的性质进行求解;
(Ⅲ)由(I),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.
【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.
(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.
当0<a<1时,f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,
令g(t)=2at2+(a﹣1)t﹣1,
则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,
且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)
令﹣1<<1,得a<(舍)或a>.
①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,
∴A=2﹣3a,
②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),
又|g()|﹣|g(﹣1)|=>0,
∴A=|g()|=,
综上,A=.
(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,
当0<a≤时,|f′(x)|<1+a≤2﹣4a<2(2﹣3a)=2A,
当<a<1时,A==++>1,
∴|f′(x)|≤1+a≤2A,
当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,
综上:|f′(x)|≤2A.
【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,以及换元法,转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.
请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]
22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.
(1)若∠PFB=2∠PCD,求∠PCD的大小;
(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.
【考点】NC:与圆有关的比例线段.菁优网版权所有
【专题】35:转化思想;49:综合法;5M:推理和证明.
【分析】(1)连接PA,PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,运用圆的性质和四点共圆的判断,可得E,C,D,F共圆,再由圆内接四边形的性质,即可得到所求∠PCD的度数;
(2)运用圆的定义和E,C,D,F共圆,可得G为圆心,G在CD的中垂线上,即可得证.
【解答】(1)解:连接PB,BC,
设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,
∠PBA=∠4,∠PAB=∠5,
由⊙O中的中点为P,可得∠4=∠5,
在△EBC中,∠1=∠2+∠3,
又∠D=∠3+∠4,∠2=∠5,
即有∠2=∠4,则∠D=∠1,
则四点E,C,D,F共圆,
可得∠EFD+∠PCD=180°,
由∠PFB=∠EFD=2∠PCD,
即有3∠PCD=180°,
可得∠PCD=60°;
(2)证明:由C,D,E,F共圆,
由EC的垂直平分线与FD的垂直平分线交于点G
可得G为圆心,即有GC=GD,
则G在CD的中垂线,又CD为圆G的弦,
则OG⊥CD.
【点评】本题考查圆内接四边形的性质和四点共圆的判断,以及圆的垂径定理的运用,考查推理能力,属于中档题.
[选修4-4:坐标系与参数方程]
23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.菁优网版权所有
【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程;5S:坐标系和参数方程.
【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;
(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.
另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.
【解答】解:(1)曲线C1的参数方程为(α为参数),
移项后两边平方可得+y2=cos2α+sin2α=1,
即有椭圆C1:+y2=1;
曲线C2的极坐标方程为ρsin(θ+)=2,
即有ρ(sinθ+cosθ)=2,
由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,
即有C2的直角坐标方程为直线x+y﹣4=0;
(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,
|PQ|取得最值.
设与直线x+y﹣4=0平行的直线方程为x+y+t=0,
联立可得4x2+6tx+3t2﹣3=0,
由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,
解得t=±2,