温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2 向心力
2
向心力
向心力
课 时 教 案
第 六 单元 第 2 案 总第 案
课题: §6.2 向心力 年 月 日
教学目标 核心素养
物理观念:理解向心力的概念,知道它的命名方式
科学探究:会分析向心力的来源,知道向心力大小与哪些因素有关
科学思维:掌握向心力公式,并能进行计算;会分析一般曲线运动的向心力
科学思维:会分析变速圆周运动的合力与向心力的关系,会求某一点的向心力
教学重点
1. 向心力的概念的理解及命名方式;向心力的来源,影响向心力大小的因素
2. 向心力公式及应用;变速圆周运动的分析
3.
教学难点
1.向心力的来源及理解
2.向心力公式及应用;变速圆周运动的分析
3.曲率半径
高考考点
课 型
新授
教 具
教 法
教 学 过 程
教学环节
教师活动预设
学生活动预设
复习引入:
1.v、ω的物理意义,二者间的关系。
由二者间的关系可得:v大的圆周运动ω不一定大,ω大的圆周运动v不一定大。
由于做圆周运动的物体线速度v不断变化,根据牛顿第一定律可知,物体受到的合外力一定不是零,所以圆周运动是变速运动,物体受到的合外力有哪些特点呢?
一、演示:1.学生手拉物体绕轴转动,感受手的拉力变化。
2.完成课本P27 6.2-1的思考与讨论,体会周运动的物体受力特点。分析小球受力情况(重力、支持力、拉力)。
思考课本P27课前问题。引入新课。
学生讨论回答,调动积极性
教学环节
教师活动预设
学生活动预设
问题:剪断细线后,小球运动方向?
根据受力分析得出:绳中的拉力即是物体受到的合外力。方向指向圆心。
大量事实和实例表明:做匀速圆周运动的物体所受到的合力总指向圆心。这种力称为向心力。
一、向心力
1.定义:做匀速圆周运动的物体所受到的合力总指向圆心,这个指向圆心的力就叫做向心力。符号:Fn
2.方向:始终指向圆心(与速度方向垂直或沿半径方向)
所以是变力,且时刻在变。
3. 来源:
如右图,一小球用细线拉着在水平面内做匀速圆周运动,分析小球受力情况,并分析小球向心力的来源。
得出:向心力是根据力的作用效果命名的,不是具有确定性质的力,它可以是某一个力,也可是几个力的合力或某一个力的分力。
4.作用效果:只改变线速度的方向,不改变线速度的大小。
练:1.判定正误:
①向心力既可以改变速度的大小,也可以改变速度的方向(×)
②无论物体是否做匀速圆周运动,物体受到的指向圆心的合力一定等于向心力( √ )
③圆周运动中,物体受到的合外力一定与速度方向垂直( × )
④做匀速圆周运动的物体受到的合外力就是向心力,大小方向都不变( × )
⑤做匀速圆周运动的物体受到的合外力就是向心力,也可以是某种性质的一个力来提供。( √ )
依据曲线运动特点得出:沿切线方向做匀速直线运动。
学生分析受力,得出来源,引导学生学会求解向心力的来源。
教学环节
教师活动预设
学生活动预设
练2.分析下列常见的圆周运动实例向心力的来源
实例
示意图
向心力
木块随圆通绕轴线做圆周运动
圆通侧壁对木块的弹力提供向心力
圆盘上的物块随圆盘保持相对静止一起转动
圆盘木块的摩擦力提供向心力
小球在圆锥桶内匀速转动
桶壁对小球的弹力和小球的重力
轻绳连接两个小球一起围绕o点在水平面内转动
轻绳对小球的拉力的合力提供向心力
二、向心力的大小
1.做一做课本P28 6.2-3,感受向心力的大小与哪些因素有关。
2.实验探究
通过实验猜想向心力可能相关因素有:质量、半径、转动快慢。
设计方案:用如图所示向心力演示器来探究小球做圆周运动所需向心力的大小Fn与质量m、角速度ω和半径r之间的关系。首先介绍各部分装置名称及作用。
问题1.设计的物理量较多,采用什么方法实验。(控制变量法)
分析课前问题,空中飞椅的圆周运动的模型。向心力的来源
分别改变物体的质量,绳的长短,转动的快慢,体验。
教学环节
教师活动预设
学生活动预设
问题2.在研究Fn的大小与m关系时,要保持哪些物理量相同。(保持ω和r均相同)
问题3. 在研究Fn的大小与ω关系时,要保持哪些物理量相同。(保持m和r均相同)
问题3. 在研究Fn的大小与r关系时,要保持哪些物理量相同。(保持m和ω均相同)
通过本实验可以得到的结论:
① ω和r均相同时,Fn的大小与m成正比
② m和r均相同时,Fn的大小与ω的平方成正比
③m和ω均相同时,Fn的大小与r成正比
通过精确的实验表明,向心力的大小可以表示为:
将 带入 得:
将 代入上式,还可得到其它公式:
公式的理解
①做圆周运动的物体,若轨道半径保持不变,则向心力大小与v2和ω2成正比;若线速度大小保持不变,向心力大小与r成反比;若角速度大小保持不变,向心力大小与r成正比;
②当物体所受合力满足大小等于 或 ,并且方向总是垂直于线速度方向时,物体就会做匀速圆周运动,物体所需要的向心力由所受外力的合力提供。
例1.如图所示,在匀速转动的圆筒内壁上,有一个物体一直随圆筒一起转动而未相对滑动,当圆筒的角速度ω增大以后,下列说法正确的是( D)
问题也是实验步骤,实验时注意记录试验数据。一边处理数据
要强调速度v是相对于圆心的速度。
教学环节
教师活动预设
学生活动预设
A.物体所受弹力增大,摩擦力也增大了
B.物体所受弹力增大,摩擦力减小了
C.物体所受弹力和摩擦力都减小了
D.物体所受弹力增大,摩擦力不变
2.如图所示,小物体A与圆盘保持相对静止,随圆盘一起做匀速圆周运动,则( BD)
A. A受到重力、弹力,两者的合力提供向心力
B.A受到重力、弹力和指向圆心的摩擦力,摩擦力充当向心力
C. A受到重力、弹力、向心力和摩擦力
D.当圆盘的角速度超过一定数值时,木块将滑动
(变式1)如图所示,水平转台上放着A、B、C三物体,质量
分别为2m、m、m,离转轴距离分别为R、R、2R,与转台动摩擦因数相同,当转台旋转时,若A、B、C三物体相对圆盘静止,则下列判断中正确的是( ABC )
A.C物向心加速度最大
B.B物受摩擦力最小
C.当圆台转速增大时,C物比A物先滑动
D.当圆台转速增大时,B物比A物先滑动
三、变速圆周运动和一般曲线运动的受力特点
1.变速圆周运动的向心力
结合右图分析变速圆周运动的原因,从而得出变速圆周运动合外力方向与速度方向的关系。(从加速和减速两方面来分析)
Fn与速度方向垂直,改变速度的方向;
Fτ与速度方向相同,改变速度的大小。
两者的合力就是物体受到的合
教学环节
教师活动预设
学生活动预设
外力,当F与v夹角小于900时,物体做加速圆周运动;当F与v夹角大于900时,物体做减速圆周运动;当夹角等于900时,物体做匀速圆周运动。
注:变速圆周运动中,某位置时的向心力大小对应该位置的线速度大小、角速度和半径,物体所受向心力由物体所受外力在沿半径方向的分力的合力提供,沿速度方向的分力的合力改变速度的大小。
例. 如图示,一小球用细线悬挂于O点,将其拉离竖直位置一个角度后释放,则小球以O点为圆心做圆周运动,运动中小球所需的向心力是( D )
A.绳的拉力
B.重力和绳的拉力的合力
C.重力和绳的拉力的合力沿绳方向的分力
D.绳的拉力和重力沿绳方向的分力的合力
2.一般曲线运动的处理方法
运动轨迹既不是直线也不是圆周的曲线运动,可以称为一般的曲线运动。
处理方法:把曲线分割为许多很短的小段,质点在每小段的运动都可以看做圆周运动的一部分,这样在分析质点经过曲线上某位置的运动时,就可以采用圆周运动的分析方法来分析了。
例. 一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替.如图(a)所示,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫做A点的曲率半径.现将
练习:课本P30课后题5.
学生阅读课本P30上部内容,得出处理方法。
圆周的半径就是该点的曲率半径:曲线某点内切圆的半径。
教学环节
教师活动预设
学生活动预设
一物体沿与水平面成α角的方向以速度υ0抛出,如图(b)所示.则在其轨迹最高点P处的曲率半径是( )
A.
B.
C.
D.
小结:
作业:
教学环节
教师活动预设
学生活动预设