分享
吉林省蛟河市第一中学2023学年高三下第一次测试数学试题(含解析).doc
下载文档

ID:34638

大小:2.01MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
吉林省 蛟河市 第一 中学 2023 学年 下第 一次 测试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填( ) A. B. C. D. 2.已知,则( ) A. B. C. D. 3.已知双曲线的左、右焦点分别为,,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),,则双曲线C的渐近线方程为( ) A. B. C. D. 4.记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为( ) A. B. C. D. 5.给定下列四个命题: ①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行; ②若一个平面经过另一个平面的垂线,则这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( ) A.①和② B.②和③ C.③和④ D.②和④ 6.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种. A.408 B.120 C.156 D.240 7.已知集合,则集合的非空子集个数是( ) A.2 B.3 C.7 D.8 8.已知向量,则向量在向量方向上的投影为( ) A. B. C. D. 9. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为 A. B. C. D. 10.曲线上任意一点处的切线斜率的最小值为( ) A.3 B.2 C. D.1 11.已知复数满足,则( ) A. B. C. D. 12.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为________. 14.已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数__________. 15.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________. 16.已知实数,满足约束条件,则的最大值是__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知抛物线的焦点为,点,点为抛物线上的动点. (1)若的最小值为,求实数的值; (2)设线段的中点为,其中为坐标原点,若,求的面积. 18.(12分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,. (1)求椭圆的方程; (2)延长分别交椭圆于点(不重合).设,求的最小值. 19.(12分)设,函数,其中为自然对数的底数. (1)设函数. ①若,试判断函数与的图像在区间上是否有交点; ②求证:对任意的,直线都不是的切线; (2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由. 20.(12分)在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1)求曲线的普通方程与曲线的直角坐标方程; (2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积. 21.(12分)已知函数. (Ⅰ)当时,求函数在上的值域; (Ⅱ)若函数在上单调递减,求实数的取值范围. 22.(10分)在中,. (Ⅰ)求角的大小; (Ⅱ)若,,求的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 模拟执行程序框图,即可容易求得结果. 【题目详解】 运行该程序: 第一次,,; 第二次,,; 第三次,,, …; 第九十八次,,; 第九十九次,,, 此时要输出的值为99. 此时. 故选:C. 【答案点睛】 本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题. 2、D 【答案解析】 根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案. 【题目详解】 因为,所以,所以是减函数, 又因为,所以,, 所以,,所以A,B两项均错; 又,所以,所以C错; 对于D,,所以, 故选D. 【答案点睛】 这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系. 3、C 【答案解析】 利用三角形与相似得,结合双曲线的定义求得的关系,从而求得双曲线的渐近线方程。 【题目详解】 设,, 由,与相似, 所以,即, 又因为, 所以,, 所以,即,, 所以双曲线C的渐近线方程为. 故选:C. 【答案点睛】 本题考查双曲线几何性质、渐近线方程求解,考查数形结合思想,考查逻辑推理能力和运算求解能力。 4、C 【答案解析】 据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案. 【题目详解】 根据题意可得集合所表示的区域即为如图所表示: 的圆及内部的平面区域,面积为, 集合,,表示的平面区域即为图中的,, 根据几何概率的计算公式可得, 故选:C. 【答案点睛】 本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积. 5、D 【答案解析】 利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择. 【题目详解】 当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④. 故选:D 【答案点睛】 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题. 6、A 【答案解析】 利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况; 【题目详解】 解:根据题意,首先不做任何考虑直接全排列则有(种), 当“乐”排在第一节有(种), 当“射”和“御”两门课程相邻时有(种), 当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种), 则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种), 故选:. 【答案点睛】 本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题. 7、C 【答案解析】 先确定集合中元素,可得非空子集个数. 【题目详解】 由题意,共3个元素,其子集个数为,非空子集有7个. 故选:C. 【答案点睛】 本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个. 8、A 【答案解析】 投影即为,利用数量积运算即可得到结论. 【题目详解】 设向量与向量的夹角为, 由题意,得,, 所以,向量在向量方向上的投影为. 故选:A. 【答案点睛】 本题主要考察了向量的数量积运算,难度不大,属于基础题. 9、D 【答案解析】 分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为, 所以, 又,则 故选D. 点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种: (1)定义法,若()或(), 数列是等比数列; (2)等比中项公式法,若数列中,且(),则数列是等比数列. 10、A 【答案解析】 根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案. 【题目详解】 解:由于,根据导数的几何意义得: , 即切线斜率, 当且仅当等号成立, 所以上任意一点处的切线斜率的最小值为3. 故选:A. 【答案点睛】 本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力. 11、A 【答案解析】 根据复数的运算法则,可得,然后利用复数模的概念,可得结果. 【题目详解】 由题可知: 由,所以 所以 故选:A 【答案点睛】 本题主要考查复数的运算,考验计算,属基础题. 12、B 【答案解析】 试题分析:由题意得,,所以,,所求双曲线方程为. 考点:双曲线方程. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程. 【题目详解】 双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为. 由题意得,解得. 故答案为:. 【答案点睛】 本题考查利用抛物线上的点求参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题. 14、 【答案解析】 由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率.注意对称性,问题应该有两解. 【题目详解】 直线过抛物线的焦点,,过,分别作的准线的垂线,垂足分别为,,由抛物线的定义知,. 因为,所以.因为, 所以,从而. 设直线的倾斜角为,不妨设,如图,则, ,同理, 则, 解得,,由对称性还有满足题意. ,综上,. 【答案点睛】 本题考查抛物线的性质,考查抛物线的焦点弦问题,掌握抛物线的定义,把抛物线上点到焦点距离与它到距离联系起来是解题关键. 15、 【答案解析】 求出抛物线的焦点坐标,代入圆的方程,求出的值,再求出准线方程,利用点到直线的距离公式,求出弦心距,利用勾股定理可以求出弦长的一半,进而求出弦长. 【题目详解】 抛物线E: 的准线为,焦点为(0,1),把

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开