温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
高级中学
2023
学年
下学
期一模
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 的内角的对边分别为,已知,则角的大小为( )
A. B. C. D.
2.已知集合,集合,若,则( )
A. B. C. D.
3.已知向量与的夹角为,,,则( )
A. B.0 C.0或 D.
4.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则
A. B. C. D.
5.已知复数满足,则=( )
A. B.
C. D.
6.已知,则的值构成的集合是( )
A. B. C. D.
7.已知正四面体的内切球体积为v,外接球的体积为V,则( )
A.4 B.8 C.9 D.27
8.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )
A. B. C.16 D.32
9.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )
A.72种 B.144种 C.288种 D.360种
10.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为
A. B. C. D.
11.已知复数,则( )
A. B. C. D.2
12.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为( )
A.20 B.24 C.25 D.26
二、填空题:本题共4小题,每小题5分,共20分。
13.在△ABC中,()⊥(>1),若角A的最大值为,则实数的值是_______.
14.若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_____.
15.公比为正数的等比数列的前项和为,若,,则的值为__________.
16.已知数列满足,则________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)写出的极坐标方程与直线的直角坐标方程;
(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.
18.(12分)在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,和一样不加区分为开粉色花,为开白色花.生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父系的遗传因子和一个母系的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的.可以把第代的遗传设想为第次实验的结果,每一次实验就如同抛一枚均匀的硬币,比如对具有性状的父系来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母系也一样.父系、母系各自随机选择得到的遗传因子再配对形成子代的遗传性状.假设三种遗传性状,(或),在父系和母系中以同样的比例:出现,则在随机杂交实验中,遗传因子被选中的概率是,遗传因子被选中的概率是.称,分别为父系和母系中遗传因子和的频率,实际上是父系和母系中两个遗传因子的个数之比.基于以上常识回答以下问题:
(1)如果植物的上一代父系、母系的遗传性状都是,后代遗传性状为,(或),的概率各是多少?
(2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父系和母系中仅有遗传性状为和(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为,被选中的概率为,.求杂交所得子代的三种遗传性状,(或),所占的比例.
(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除性状为的个体假设得到的第代总体中3种遗传性状,(或),所占比例分别为.设第代遗传因子和的频率分别为和,已知有以下公式.证明是等差数列.
(4)求的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?
19.(12分)设数列,的各项都是正数,为数列的前n项和,且对任意,都有,,,(e是自然对数的底数).
(1)求数列,的通项公式;
(2)求数列的前n项和.
20.(12分)某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.
(1)若当时,,求此时的值;
(2)设,且.
(i)试将表示为的函数,并求出的取值范围;
(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.
21.(12分)如图,在四棱锥中,底面是直角梯形,,,,是正三角形,,是的中点.
(1)证明:;
(2)求直线与平面所成角的正弦值.
22.(10分)已知向量, .
(1)求的最小正周期;
(2)若的内角的对边分别为,且,求的面积.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.
【题目详解】
由正弦定理可得,即,即有,因为,则,而,所以.
故选:A
【答案点睛】
此题考查了正弦定理和三角函数的恒等变形,属于基础题.
2、A
【答案解析】
根据或,验证交集后求得的值.
【题目详解】
因为,所以或.当时,,不符合题意,当时,.故选A.
【答案点睛】
本小题主要考查集合的交集概念及运算,属于基础题.
3、B
【答案解析】
由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.
【题目详解】
由向量与的夹角为,
得,
所以,
又,,,,
所以,解得.
故选:B
【答案点睛】
本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.
4、B
【答案解析】
由题意知,,由,知,由此能求出.
【题目详解】
由题意知,,
,解得,
,
.
故选:B.
【答案点睛】
本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.
5、B
【答案解析】
利用复数的代数运算法则化简即可得到结论.
【题目详解】
由,得,
所以,.
故选:B.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.
6、C
【答案解析】
对分奇数、偶数进行讨论,利用诱导公式化简可得.
【题目详解】
为偶数时,;为奇数时,,则的值构成的集合为.
【答案点睛】
本题考查三角式的化简,诱导公式,分类讨论,属于基本题.
7、D
【答案解析】
设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.
【题目详解】
设正四面体的棱长为,取的中点为,连接,
作正四面体的高为,
则,
,
,
设内切球的半径为,内切球的球心为,
则,
解得:;
设外接球的半径为,外接球的球心为,
则或,,
在中,由勾股定理得:
,
,解得,
,
故选:D
【答案点睛】
本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.
8、A
【答案解析】
几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.
9、B
【答案解析】
利用分步计数原理结合排列求解即可
【题目详解】
第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.
选.
【答案点睛】
本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题
10、B
【答案解析】
推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.
【题目详解】
解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,
基本事件总数,
6和28恰好在同一组包含的基本事件个数,
∴6和28恰好在同一组的概率.
故选:B.
【答案点睛】
本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.
11、C
【答案解析】
根据复数模的性质即可求解.
【题目详解】
,
,
故选:C
【答案点睛】
本题主要考查了复数模的性质,属于容易题.
12、D
【答案解析】
利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.
【题目详解】
混合后可以组成的所有不同的滋味种数为(种),
故选:D.
【答案点睛】
本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
把向量进行转化,用表示,利用基本不等式可求实数的值.
【题目详解】
,解得=1.
故答案为:1.
【答案点睛】
本题主要考查平面向量的数量积应用,综合了基本不等式,侧重考查数学运算的核心素养.
14、
【答案解析】
把已知等式变形,再由复数代数形式的乘除运算化简,求出得答案.
【题目详解】
,,
则,的共轭复数在复平面内对应点的坐标为,
故答案为
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义准确计算是关键,是基础题.
15、56
【答案解析】
根据已知条件求等比数列的首项和公比,再代入等比数列的通项公式,即可得到答案.
【题目详解】
,,
.
故答案为:.
【答案点睛】
本题考查等比数列的通项公式和前项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.
16、
【答案解析】
项和转化可得,讨论是否满足,分段表示即得解
【题目详解】
当时,由已知,可得,
∵,①
故,②
由①-②得,
∴.
显然当时不满足上式,
∴
故答案为:
【答案点睛】
本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.
三、解答题:共7