温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
吉林省
长春市
十一
2023
学年
高考
考前
模拟
数学试题
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数(其中,,)的图象如图,则此函数表达式为( )
A. B.
C. D.
2.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )
A.1 B. C. D.0
3.若两个非零向量、满足,且,则与夹角的余弦值为( )
A. B. C. D.
4.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )
A. B. C. D.
5.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为( )
A. B. C.8 D.6
6.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是( )
A.③④ B.①③ C.②③ D.①②
7.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).
A. B. C. D.
8.已知是第二象限的角,,则( )
A. B. C. D.
9.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )
A. B. C. D.
10.已知集合,则集合真子集的个数为( )
A.3 B.4 C.7 D.8
11.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )
A. B. C. D.8
12.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是__.
14.我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1丈=10尺).
15.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.
16.利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是______
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.
18.(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且.
(1)求证:平面;
(2)设,若直线与平面所成的角为,求二面角的正弦值.
19.(12分)已知函数.
(1)若,解关于的不等式;
(2)若当时,恒成立,求实数的取值范围.
20.(12分)设函数.
(1)若函数在是单调递减的函数,求实数的取值范围;
(2)若,证明:.
21.(12分)已知,,分别为内角,,的对边,且.
(1)证明:;
(2)若的面积,,求角.
22.(10分)设,
(1)求的单调区间;
(2)设恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.
【题目详解】
解:由图象知,,则,
图中的点应对应正弦曲线中的点,
所以,解得,
故函数表达式为.
故选:B.
【答案点睛】
本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.
2、B
【答案解析】
根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1.计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离.
【题目详解】
由题意,白蚂蚁爬行路线为AA1→A1D1→D1C1→C1C→CB→BA,
即过1段后又回到起点,
可以看作以1为周期,
由,
白蚂蚁爬完2020段后到回到C点;
同理,黑蚂蚁爬行路线为AB→BB1→B1C1→C1D1→D1D→DA,
黑蚂蚁爬完2020段后回到D1点,
所以它们此时的距离为.
故选B.
【答案点睛】
本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.
3、A
【答案解析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.
【题目详解】
设平面向量与的夹角为,,可得,
在等式两边平方得,化简得.
故选:A.
【答案点睛】
本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.
4、A
【答案解析】
设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.
【题目详解】
设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上
的双曲线”,由题意,,,则所求的概率为
.
故选:A.
【答案点睛】
本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.
5、C
【答案解析】
由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.
【题目详解】
设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,
则,,设
由椭圆的定义以及双曲线的定义可得:
,
则
当且仅当时,取等号.
故选:C.
【答案点睛】
本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.
6、C
【答案解析】
①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.
【题目详解】
①当直线x、y、z位于正方体的三条共点棱时,不正确;
②因为垂直于同一平面的两直线平行,正确;
③因为垂直于同一直线的两平面平行,正确;
④如x、y、z位于正方体的三个共点侧面时, 不正确.
故选:C.
【答案点睛】
此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.
7、A
【答案解析】
基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率.
【题目详解】
解:从四个阴数和五个阳数中分别随机选取1个数,
基本事件总数,
其和等于11包含的基本事件有:,,,,共4个,
其和等于的概率.
故选:.
【答案点睛】
本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.
8、D
【答案解析】
利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.
【题目详解】
因为,
由诱导公式可得,,
即,
因为,
所以,
由二倍角的正弦公式可得,
,
所以.
故选:D
【答案点睛】
本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.
9、A
【答案解析】
先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.
【题目详解】
由题意知,抛物线焦点,准线与x轴交点,双曲线半焦距,设点 是以点为直角顶点的等腰直角三角形,即,结合点在抛物线上,
所以抛物线的准线,从而轴,所以,
即
故双曲线的离心率为
故选A
【答案点睛】
本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.
10、C
【答案解析】
解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.
【题目详解】
解:由,得
所以集合的真子集个数为个.
故选:C
【答案点睛】
此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.
11、A
【答案解析】
由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.
【题目详解】
由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,
直观图如图所示,.
故选:A.
【答案点睛】
本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.
12、D
【答案解析】
先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.
【题目详解】
因为函数的最小正周期是,所以,即,所以,
的图象向左平移个单位长度后得到的函数解析式为,
由于其图象关于轴对称,所以,又,所以,所以,
所以,
因为的递增区间是:,,
由,,得:,,
所以函数的单调递增区间为().
故选:D.
【答案点睛】
本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、2
【答案解析】
由题,得,然后根据纯虚数的定义,即可得到本题答案.
【题目详解】
由题,得,又复数为纯虚数,
所以,解得.
故答案为:2
【答案点睛】
本题主要考查纯虚数定义的应用,属基础题.
14、21 3892
【答案解析】
根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.
【题目详解】
如图所示:
正四棱锥P-A BCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺,
截去一段后,得正四棱台ABCD-A'B'C'D',且上底边长为A'B'=6尺,
所以,
解得,
所以该正四棱台的体积是
,
故答案为:21;3892.
【答案点睛】
本题考查了棱锥与棱台的结构特征与应用