主讲人:深圳市翠园中学王文聪深圳市新课程新教材高中数学在线教学6.4.5余弦定理、正弦定理应用举例课堂引入在实践中,我们经常会遇到测量距离、高度、角度等实际问题。解决这类问题,通常需要借助经纬仪以及卷尺等测量角和距离的工具进行测量。具体测量时,我们常常遇到“不能到达”的困难,这就需要设计恰当的测量方案,下面我们通过几道例题来说明这种情况。需要注意的是,题中为什么要给出这些已知条件,而不是其他条件。事实上,这些条件往往隐含着相应测量问题在某种特定情景和条件限制下的一个测量方案,而且是这种情景与条件限制下的恰当方案。探索新知•仰角:目标视线在水平线上方的叫仰角;•俯角:目标视线在水平线下方的叫俯角;•方位角:北方向线顺时针方向到目标方向线的夹角。水平线视线视线仰角俯角几个概念N方位角60°目标方向线创设情境情境一A,B两点都在河的对岸(不可到达),设计一种测量A,B两点间的距离的方法,并求出A,B间的距离分析:计算出河的这一岸的一点C到对岸两点的距离,再测出∠BCA的大小,借助于余弦定理可以计算出A,B两点间的距离.测量距离解:测量者可以在河岸边选定两点C,D,测得CD=a,并且在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ,在△ADC和△BDC中,应用正弦定理得sin()sin()sin()sin180()aaAC;sinsin.sin()sin180()aaBC计算出AC和BC后,再在△ABC中,应用余弦定理计算出AB两点间的距离为DCBAαβγδ222cos.ABACBCACBC创设情境分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高.由解直角三角形的知识,只要能测出一点C到建筑物的顶部A的距离CA,并测出由点C观察A的仰角,就可以计算出建筑物的高.情境二如图,AB是底部B不可到达的一座建筑物,A为建筑物的最高点。设计一种测量建筑物高度AB的方法,并求出建筑物的高度。测量高度创设情境sinsin()aAC所以sinsinsinsin()aABAEhAChh从而解:选择一条水平基线HG,使H,G,B三点在同一条直线上,由在H,G两点用测角仪器测得A的仰角分别是α,β,CD=a,测角仪器的高是h.那么,在ACD中,根据正弦定理可得)sin(sinaACBEAHGDCha创设情境情境三位于某海域A处的甲船获悉,在其正东方向相距20nmile的B处有一艘渔船遇险后抛锚等待营救.甲船立即前往救援,同时把消息告知位于...