第二课时分类加法计数原理与分步乘法计数原理的应用题型一数字排列组数问题[学透用活][典例1]用0,1,2,3,4五个数字,(1)可以排成多少个三位数?(2)可以排出多少个三位数字的电话号码?(3)可以排成多少个能被2整除的无重复数字的三位数?[解](1)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种排法,第二、三位可以排0,因此,共有4×5×5=100个.(2)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125个.(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12种排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18种排法.因而有12+18=30种排法,即可以排成30个能被2整除的无重复数字的三位数.[方法技巧]解决组数问题的方法(1)对于组数问题,一般按特殊位置(一般是末位和首位)优先的方法分类或分步完成;如果正面分类较多,可采用间接法从反面求解.(2)解决组数问题,应特别注意其限制条件,有些条件是隐藏的,要善于挖掘.排数时,要注意特殊元素、特殊位置优先的原则.[提醒]数字“0”不能排在两位数字或两位数字以上的数的最高位.[对点练清]1.[变设问]在本例条件下,可以排成多少个无重复数字的四位奇数?解:完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,把1,2,3,4中除去用过的一个还有3个可任取一个,有3种方法;第三步,第四步把剩下的包括0在内的还有3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理知共有2×3×3×2=36个.2.[变设问]在本例条件下,可以排成多少个能被3整除的四位数?解:一个四位数能被3整除,必须各位上数字之和能被3整除,故组成四位数的四个数字只能是0,1,2,3或0,2,3,4两类.所以满足题设的四位数共有2×3×3×2×1=36个.题型二选(抽)取与分配问题[学透用活][典例2]在7名学生中,有3名会下象棋但不会下围棋,有2名会下围棋但不会下象棋,另2名既会下象棋又会下围棋,现在从7人中选2人分别参加象棋比赛和围棋比赛,共有多少种不同的选法?[解]法一:分四类:第1类,从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛,有选法3×2=6(种);第2类,从3名只会下象棋的学生中选1名参...