第4课时
切线长定理及三角形的内切圆
课时
切线
定理
三角形
内切圆
第27章 圆,27.2 与圆有关的位置关系 第4课时 切线 切线长定理及三角形的内切圆,学习目标,1.掌握切线长的定义及切线长定理.(重点)2.初步学会运用切线长定理进行计算与证明.(难点),导入新课,情境引入,同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?,讲授新课,互动探究,问题1 上节课我们学习了过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?过圆外的一点作圆的切线,可以作几条?,A,B,1.切线长的定义:切线上一点到切点之间的线段的长叫作这点到圆的切线长,A,O,切线是直线,不能度量.,切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量,2.切线长与切线的区别在哪里?,知识要点,问题2 PA为O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B,OB是O的一条半径吗?,PB是O的切线吗?,(利用图形轴对称性解释),PA、PB有何关系?,APO和BPO有何关系?,B,P,O,A,切线长定理:过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.,PA、PB分别切O于A、B,PA=PB,OPA=OPB,几何语言:,切线长定理为证明线段相等、角相等提供了新的方法.,知识要点,已知,如图PA、PB是O的两条切线,A、B为切点.求证:PA=PB,APO=BPO.,证明:PA切O于点A,OAPA.,同理可得OBPB.,OA=OB,OP=OP,,RtOAPRtOBP,,PA=PB,APO=BPO.,推理验证,想一想:若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.,OP垂直平分AB.,证明:PA,PB是O的切线,点A,B是切点 PA=PB,OPA=OPB PAB是等腰三角形,PM为顶角的平分线 OP垂直平分AB.,M,想一想:若延长PO交O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.,证明:PA,PB是O的切线,点A,B是切点,PA=PB,OPA=OPB.PC=PC.PCA PCB,AC=BC.,CA=CB,C,典例精析,例1 已知:如图,四边形ABCD的边AB、BC、CD、DA与O分别相切与点E、F、G、H.,求证:AB+CD=AD+BC.,O,证明:AB、BC、CD、DA与O分别相切与点E、F、G、H,,E,F,G,H,AE=AH,BE=BF,CG=CF,DG=DH.,AE+BE+CG+DG=AH+BF+CF+DH.,AB+CD=AD+BC.,例2 为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径,解析:欲求半径OP,取圆的圆心为O,连OA,OP,由切线性质知OPA为直角三角形,从而在RtOPA中由勾股定理易求得半径,在RtOPA中,PA5,POA30,,Q,解:过O作OQAB于Q,设铁环的圆心为O,连接OP、OA.,AP、AQ为O的切线,AO为PAQ的平分线,即PAOQAO.,又BAC60,PAOQAOBAC180,PAOQAO60.,即铁环的半径为,1.PA、PB是O的两条切线,A、B为切点,直线OP交O于点D、E,交AB于C.,(1)写出图中所有的垂直关系;,OAPA,OB PB,AB OP.,(3)写出图中所有的全等三角形;,AOP BOP,AOC BOC,ACP BCP.,(4)写出图中所有的等腰三角形.,ABP AOB,(2)写出图中与OAC相等的角;,OAC=OBC=APC=BPC.,练一练,2.PA、PB是O的两条切线,A,B是切点,OA=3.,(1)若AP=4,则OP=;,(2)若BPA=60,则OP=.,5,6,14,70,解析:连接OA、OB、OC、OD和OE.PA、PB是O的两条切线,点A、B是切点,PA=PB=7.PAO=PBO=90.AOB=360-PAO-PBO-P=140.,又DC、DA是O的两条切线,点C、A是切点,DC=DA.同理可得CE=CB.,D,E是切线PA,PB上的点,,DOC=DOA=AOC.,DOE=DOC+COE=(AOC+COB)=70.,COE=BOE=AOC.,SPDE=PD+DE+PE=PD+DC+CE+PE=PA+PB=14.,切线长问题辅助线添加方法:(1)分别连接圆心和切点;(2)连接两切点;(3)连接圆心和圆外一点.,方法归纳,小明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?,互动探究,问题1 如果最大圆存在,它与三角形三边应有怎样的位置关系?,最大的圆与三角形三边都相切,问题2 如何求作一个圆,使它与已知三角形的三边都相切?,(1)如果半径为r的I与ABC的三边都相切,那么圆心I应满足什么条件?,(2)在ABC的内部,如何找到满足条件的圆心I呢?,已知:ABC.求作:和ABC的各边都相切的圆.,作法:1.作B和C的平分线BM和CN,交点为O.2.过点O作ODBC.垂足为D.3.以O为圆心,OD为半径作圆O.,O就是所求的圆.,做一做,1.与三角形三边都相切的圆叫作三角形的内切圆.,2.三角形内切圆的圆心叫做这个三角形的内心.,