分享
上海市上戏附中2023学年高三最后一模数学试题(含解析).doc
下载文档

ID:34349

大小:2.37MB

页数:22页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
上海市 上戏 附中 2023 学年 最后 数学试题 解析
2023学年高考数学模拟测试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.下列函数中,值域为的偶函数是( ) A. B. C. D. 2.设是两条不同的直线,是两个不同的平面,下列命题中正确的是(  ) A.若,,则 B.若,,则 C.若,,则 D.若,,则 3.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则( ) A. B.f(sin3)<f(cos3) C. D.f(2020)>f(2019) 4.已知等差数列满足,公差,且成等比数列,则 A.1 B.2 C.3 D.4 5.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断: ①以为直径的圆与抛物线准线相离; ②直线与直线的斜率乘积为; ③设过点,,的圆的圆心坐标为,半径为,则. 其中,所有正确判断的序号是( ) A.①② B.①③ C.②③ D.①②③ 6.如图,在中,,是上一点,若,则实数的值为( ) A. B. C. D. 7.已知函数,若对任意,都有成立,则实数的取值范围是( ) A. B. C. D. 8.已知函数满足=1,则等于( ) A.- B. C.- D. 9.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是( ) A.CPI一篮子商品中所占权重最大的是居住 B.CPI一篮子商品中吃穿住所占权重超过50% C.猪肉在CPI一篮子商品中所占权重约为2.5% D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18% 10. 的内角的对边分别为,已知,则角的大小为( ) A. B. C. D. 11.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积( ) A. B. C. D. 12.设,满足约束条件,若的最大值为,则的展开式中项的系数为( ) A.60 B.80 C.90 D.120 二、填空题:本题共4小题,每小题5分,共20分。 13.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________. 14.设满足约束条件,则的取值范围为__________. 15.设函数 满足,且当时,又函数,则函数在上的零点个数为___________. 16.平面区域的外接圆的方程是____________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、、、、、、、八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布. (1)求物理原始成绩在区间的人数; (2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望. (附:若随机变量,则,,) 18.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (Ⅰ)设直线与曲线交于,两点,求; (Ⅱ)若点为曲线上任意一点,求的取值范围. 19.(12分)已知函数,其中,. (1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由. (2)若在处取得极大值,求实数a的取值范围. 20.(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费. (I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式; (Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值; (Ⅲ)在满足(Ⅱ)的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望. 21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1)写出的普通方程和的直角坐标方程; (2)设点在上,点在上,求的最小值以及此时的直角坐标. 22.(10分)已知函数. (1)当时,判断在上的单调性并加以证明; (2)若,,求的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C. 考点:1、函数的奇偶性;2、函数的值域. 2、C 【答案解析】 在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或. 【题目详解】 设是两条不同的直线,是两个不同的平面,则: 在A中,若,,则与相交或平行,故A错误; 在B中,若,,则或,故B错误; 在C中,若,,则由线面垂直的判定定理得,故C正确; 在D中,若,,则与平行或,故D错误. 故选C. 【答案点睛】 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题. 3、B 【答案解析】 根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可. 【题目详解】 由f(x+2)=f(x),得f(x)是周期函数且周期为2, 先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移, 并结合f(x)是偶函数作出f(x)在R上的图象如下, 选项A,, 所以,选项A错误; 选项B,因为,所以, 所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确; 选项C,, 所以,即, 选项C错误; 选项D,,选项D错误. 故选:B. 【答案点睛】 本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题. 4、D 【答案解析】 先用公差表示出,结合等比数列求出. 【题目详解】 ,因为成等比数列,所以,解得. 【答案点睛】 本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键. 5、D 【答案解析】 对于①,利用抛物线的定义,利用可判断; 对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断; 对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断. 【题目详解】 如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点. 设,到准线的距离分别为,,的半径为,点到准线的距离为, 显然,,三点不共线, 则.所以①正确. 由题意可设直线的方程为, 代入抛物线的方程,有. 设点,的坐标分别为,, 则,. 所以. 则直线与直线的斜率乘积为.所以②正确. 将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知, ,两点关于轴对称,所以过点,,的圆的圆心在轴上. 由上,有,, 则. 所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以. 于是,, 代入,,得, 所以. 所以③正确. 故选:D 【答案点睛】 本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题. 6、C 【答案解析】 由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值. 【题目详解】 由题意及图,, 又,,所以,∴(1﹣m), 又t,所以,解得m,t, 故选C. 【答案点睛】 本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题. 7、D 【答案解析】 先将所求问题转化为对任意恒成立,即得图象恒在函数 图象的上方,再利用数形结合即可解决. 【题目详解】 由得,由题意函数得图象恒在函数图象的上方, 作出函数的图象如图所示 过原点作函数的切线,设切点为,则,解得,所以切 线斜率为,所以,解得. 故选:D. 【答案点睛】 本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题. 8、C 【答案解析】 设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得. 【题目详解】 解:设的最小正周期为,因为, 所以,所以, 所以, 又,所以当时,, ,因为 , 整理得,因为, , ,则 所以       .                                                                                                                                                                                                                                                                                                                                                                                                                              故选:C. 【答案点睛】 本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目. 9、D 【答案解析】 A.从第一个图观察居住占23%,与其他比较即可. B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D. 易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%. 【题目详解】 A. CPI一篮子商品中居住占23%,所占权重最大的,故正确. B. CPI一篮子商品中吃穿住所占23%

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开