17.5《不确定的关系》教学目标•(一)知识与技能•1.了解不确定关系的概念和相关计算.•2.了解物理模型与物理现象•(二)过程与方法•经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。•(三)情感、态度与价值观•能领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。•【重点难点】•1、重点:不确定关系的概念•2、难点:对不确定关系的定量应用玻恩(M.Born.1882-1970)德国物理学家。1926年提出波函数的统计意义。为此与博波(W.W.GBothe.1891-1957)共享1954年诺贝尔物理学奖。玻恩M.Born.一、德布罗意波的统计解释1926年,德国物理学玻恩(Born,1882--1972)提出了概率波,认为个别微观粒子在何处出现有一定的偶然性,但是大量粒子在空间何处出现的空间分布却服从一定的统计规律。二.经典波动与德布罗意波(物质波)的区别经典的波动(如机械波、电磁波等)是可以测出的、实际存在于空间的一种波动。而德布罗意波(物质波)是一种概率波。简单的说,是为了描述微观粒子的波动性而引入的一种方法。不确定度关系(uncertaintyrelatoin)经典力学:运动物体有完全确定的位置、动量、能量等。微观粒子:位置、动量等具有不确定量(概率)。1、电子衍射中的不确定度一束电子以速度v沿oy轴射向狭缝。电子在中央主极大区域出现的几率最大。aoxy在经典力学中,粒子(质点)的运动状态用位置坐标和动量来描述,而且这两个量都可以同时准确地予以测定。然而,对于具有二象性的微观粒子来说,是否也能用确定的坐标和确定的动量来描述呢?下面我们以电子通过单缝衍射为例来进行讨论。设有一束电子沿轴射向屏AB上缝宽为的狭缝,于是,在照相底片CD上,可以观察到如下图所示的衍射图样。如果我们仍用坐标和动量来描述这一电子的运动状态,那么,我们不禁要问:一个电子通过狭缝的瞬时,它是从缝上哪一点通过的呢?也就是说,电子通过狭缝的瞬时,其坐标为多少?显然,这一问题,我们无法准确地回答,因为此时该电子究竟在缝上哪一点通过是无法确定的,即我们不能准确地确定该电子通过狭缝时的坐标。Oybxpx对于第一衍射极小,asin1式中为电子的德布罗意波长。电子通过狭缝的瞬间,其位置在x方向上的不确定量为p1aoxyax电子的位置和动量分别用和来表示。xp同一时刻,由于衍射效应,粒子的速度方向有了改变,缝越小,动量的分量Px变化越大。p...