课后限时集训(六十四)随机事件的概率建议用时:40分钟一、选择题1.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为()A.两个任意事件B.互斥事件C.非互斥事件D.对立事件B[因为P(A)+P(B)=+==P(A∪B),所以A,B之间的关系一定为互斥事件.故选B.]2.(多选)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,下面结论正确的是()A.甲不输的概率B.乙不输的概率C.乙获胜的概率D.乙输的概率ABCD[甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,对于A,甲不输的概率为:P=+=,故A正确;对于B,乙不输的概率为:P=1-=,故B正确;对于C,乙获胜的概率为:P=1--=,故C正确;对于D,乙输的概率就是甲胜的概率,∴乙输的概率为:P=,故D正确.故选ABCD.]3.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()A.0.45B.0.67C.0.64D.0.32D[从中摸出一球,为红球的概率为=0.45.故摸出黑球的概率为1-0.45-0.23=0.32.]4.(多选)从装有2个红球和2个黑球的口袋中任取2个小球,则下列结论正确的是()A.“至少一个红球”和“都是红球”是互斥事件B.“恰有一个黑球”和“都是黑球”是互斥事件C.“至少一个黑球”和“都是红球”是对立事件D.“恰有一个红球”和“都是红球”是对立事件BC[从装有2个红球和2个黑球的口袋中任取2个小球,1对于A,“至少一个红球”和“都是红球”能同时发生,不是互斥事件,故A错误;对于B,“恰有一个黑球”和“都是黑球”不能同时发生,是互斥事件,故B正确;对于C,“至少一个黑球”和“都是红球”既不能同时发生,也不能同时不发生,是对立事件,故C正确;对于D,“恰有一个红球”和“都是红球”不能同时发生,能同时不发生,是互斥而不对立事件,故D错误.故选:BC.]5.掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,若表示B的对立事件,则一次试验中,事件A∪发生的概率为()A.B.C.D.C[掷一个骰子的试验有6种可能结果.依题意P(A)==,P(B)==,∴P()=1-P(B)=1-=. 表示“出现5点或6点”的事件,因此事件A与互斥,从而P(A∪)=P(A)+P()=+=.]二、填空题6.根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为________.65%[因为...