课时跟踪检测(五)等差数列的前n项和1.等差数列{an}的前n项和为Sn,若S2=4,S4=20,则数列{an}的公差d等于()A.2B.3C.6D.7解析:选B由已知得解得d=3.2.数列{an}为等差数列,满足a2+a4+a6+…+a20=10,则数列{an}的前21项和等于()A.B.21C.42D.84解析:选B根据等差数列的求和公式,可知a2+a4+a6+…+a20==10,即a2+a20=2,又根据等差数列的性质知,a1+a21=a2+a20,所以数列{an}的前21项和为S21==21,故选B.3.已知一个等差数列共n项,且其前四项之和为21,末四项之和为67,前n项和为286,则项数n为()A.24B.26C.25D.28解析:选B设该等差数列为{an},由题意,得a1+a2+a3+a4=21,an+an-1+an-2+an-3=67.又 a1+an=a2+an-1=a3+an-2=a4+an-3,∴4(a1+an)=21+67=88,∴a1+an=22.∴Sn==11n=286,∴n=26.4.(2020·云南玉溪第一中学月考)数列{an}的首项a1=1,对于任意m,n∈N*,有an+m=an+3m,则{an}的前5项和S5=()A.121B.25C.31D.35解析:选D令m=1,有an+1=an+3,即an+1-an=3,又已知a1=1,∴{an}是首项为1,公差为3的等差数列,∴an=1+3(n-1)=3n-2,∴S5==5a3=5×(3×3-2)=35.5.已知Sn是公差d不为零的等差数列{an}的前n项和,且S3=S8,S7=Sk(k≠7),则k的值为()A.3B.4C.5D.6解析:选B由S3=S8可知3a1+3d=8a1+28d,即a1=-5d.由S7=Sk得7a1+d=ka1+d,将a1=-5d代入化简得k2-11k+28=0,解得k=4或k=7(舍去),故选B.6.(2020·福州一中高二月考)已知等差数列{an}的前n项和为Sn,若S2=22,S5=100,则S10=________.解析:法一:设等差数列{an}的公差为d,则解得所以S10=10×8+×10×9×6=350.法二:设Sn=An2+Bn,则解得所以S10=3×102+5×10=350.答案:3507.设等差数列{an}的前n项和为Sn.若a3=5,且S1,S5,S7成等差数列,则数列{an}的通项公式an=________.解析:设等差数列{an}的公差为d, a3=5,且S1,S5,S7成等差数列,∴解得∴an=2n-1.答案:2n-18.已知公差为d的等差数列{an}的前n项和为Sn,且满足S5S6+15=0.若S5=5,则Sn=________.解析:由题意知S6=-3,∴a6=S6-S5=-8,∴解得∴Sn=7n+×(-3)=-n2+n.答案:-n2+n9.已知等差数列中,a1=1,a3=-3.(1)求数列的通项公式;(2)若数列的前k项和Sk=-35,求k的值.解:(1)设等差数列{an}的公差为d,则an=a1+(n-1)d.由a1=1,a3=-3可得1+2d=-3.解得d=-2....