第1页共5页课时跟踪检测(十三)离散型随机变量的均值1.篮球运动员在比赛中每次罚球命中得1分,没命中得0分,已知某篮球运动员命中的概率为0.8,则罚球一次得分ξ的均值是()A.0.2B.0.8C.1D.0解析:选B因为P(ξ=1)=0.8,P(ξ=0)=0.2,所以E(ξ)=1×0.8+0×0.2=0.8.故选B.2.已知随机变量ξ的分布列为ξ4a910P0.30.1b0.2若E(ξ)=7.5,则a等于()A.5B.6C.7D.8解析:选C由题意得,得3.甲、乙两台自动车床生产同种标准件,ξ表示甲车床生产1000件产品中的次品数,η表示乙车床生产1000件产品中的次品数,经一段时间考察,ξ,η的分布列分别是:ξ0123P0.70.10.10.1η0123P0.50.30.20据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙质量相同D.无法判定解析:选AE(ξ)=0×0.7+1×0.1+2×0.1+3×0.1=0.6,E(η)=0×0.5+1×0.3+2×0.2+3×0=0.7.因为E(η)>E(ξ),故甲比乙质量好.4.今有两台独立工作在两地的雷达,每台雷达发现目标的概率分别为0.9和0.85,设发现目标的雷达台数为X,则E(X)等于()A.1.25B.1.5C.1.75D.2解析:选CP(X=0)=(1-0.9)×(1-0.85)=0.1×0.15=0.015;P(X=1)=0.9×(1-0.85)+0.85×(1-0.9)=0.22;P(X=2)=0.9×0.85=0.765.∴E(X)=0×0.015+1×0.22+2×0.765=1.75.5.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X,则X的均值E(X)等于()A.B.第2页共5页C.D.解析:选B125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X的均值E(X)=×0+×1+×2+×3==.6.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的数学期望为________.解析:X的可能取值为3,2,1,0,P(X=3)=0.6,P(X=2)=0.4×0.6=0.24,P(X=1)=0.42×0.6=0.096,P(X=0)=0.43=0.064.所以E(X)=3×0.6+2×0.24+1×0.096+0×0.064=2.376.答案:2.3767.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.ξ200300400500P0.200.350.300.15解析:节日期间这种鲜花需求量的均值为E(ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利...