n次独立重复试验与二项分布[考试要求]1.了解条件概率的概念,了解两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布,并能解决一些简单问题.1.条件概率条件概率的定义条件概率的性质设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率(1)0≤P(B|A)≤1;(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)2.事件的相互独立性(1)定义:设A,B为两个事件,如果P(AB)=P(A)·P(B),则称事件A与事件B相互独立.(2)性质:①若事件A与B相互独立,则P(B|A)=P(B),P(A|B)=P(A).②如果事件A与B相互独立,那么A与,与B,与也相互独立.3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,其中Ai(i=1,2,…,n)是第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)P(A3)…P(An).(2)二项分布在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.牢记并理解事件中常见词语的含义(1)A,B中至少有一个发生的事件为A∪B;(2)A,B都发生的事件为AB;(3)A,B都不发生的事件为;(4)A,B恰有一个发生的事件为A∪B;(5)A,B至多一个发生的事件为A∪B∪.1一、易错易误辨析(正确的打“√”,错误的打“×”)(1)相互独立事件就是互斥事件.()(2)若事件A,B相互独立,则P(B|A)=P(B).()(3)公式P(AB)=P(A)P(B)对任意两个事件都成立.()(4)二项分布是一个概率分布列,是一个用公式P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了n次独立重复试验中事件A发生的次数的概率分布.()[答案](1)×(2)√(3)×(4)√二、教材习题衍生1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,则在第1次抽到文科题的条件下,第2次抽到理科题的概率为()A.B.C.D.D[根据题意,在第1次抽到文科题后,还剩4道题,其中有3道理科题,则第2次抽到理科题的概率P=,故选D.]2.两个实习生每人加工一个零件,加工成一等品的概率分别为和,两个零件中能否被加工成一等品相互独立,则这两个零件中恰好有一个一等品的概率为()A.B.C.D.B[因为两人加工成一等品的概率分别为和,且相互独立,所以两个零件中恰好有一个一等品的概率P=×+×=.]3.如果某一批玉米种子中,每粒发芽的概率均为,那么播下5粒这样的种子恰有2粒不...