课后限时集训(四十三)直线、平面垂直的判定及其性质建议用时:40分钟一、选择题1.已知直线l⊥平面α,直线m∥平面β,若α⊥β,则下列结论正确的是()A.l∥β或l⊂βB.l∥mC.m⊥αD.l⊥mA[直线l⊥平面α,α⊥β,则l∥β或l⊂β,A正确,故选A.]2.(多选)(2020·山东泰安期末)已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是()A.若m∥n,m⊥α,则n⊥αB.若m∥α,α∩β=n,则m∥nC.若m⊥α,m⊥β,则α∥βD.若m⊥α,m∥n,n⊥β,则α∥βACD[易知A正确;对于B,如图,设m为AB,平面A1B1C1D1为平面α,m∥α,设平面ADD1A1为平面β,α∩β=A1D1为n,则m⊥n,故B错;垂直于同一条直线的两个平面平行,故C对;若m⊥α,m∥n,则n⊥α,又n⊥β,则α∥β,故D对.故选ACD.]3.如图,在四面体DABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDEC[因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE.]4.(2020·南宁模拟)在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是正方形,且PA=AB=2,则直线PB与平面PAC所成角为()A.B.1C.D.A[连接BD,交AC于点O.因为PA⊥平面ABCD,底面ABCD是正方形,所以BD⊥AC,BD⊥PA.又因为PA∩AC=A,所以BD⊥平面PAC,故BO⊥平面PAC.连接OP,则∠BPO即为直线PB与平面PAC所成角.又因为PA=AB=2,所以PB=2,BO=.所以sin∠BPO==,所以∠BPO=.故选A.]5.(2017·全国卷Ⅲ)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥ACC[如图, A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴选项B,D错误; A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴A1E⊥BC1,故选项C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴A1E⊥BC1.) A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故选项A错误.故选C.]6.(多选)(2020·安徽滁州月考)如图1,在正方形ABCD中,E,F分别是AB,BC的中点,将△ADE,△CDF,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P(如图2),则下列结论正确的是()图1图2A.PD⊥EFB.平面PDE⊥平面PDFC.二面角PE...