课后限时集训(五十五)曲线与方程建议用时:40分钟一、选择题1.若方程x2+=1(a是常数),则下列结论正确的是()A.任意实数a方程表示椭圆B.存在实数a方程表示椭圆C.任意实数a方程表示双曲线D.存在实数a方程表示抛物线B[当a>0且a≠1时,该方程表示椭圆;当a<0时,该方程表示双曲线;当a=1时,该方程表示圆.故选B.]2.已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且QP·QF=FP·FQ,则动点P的轨迹C的方程为()A.x2=4yB.y2=3xC.x2=2yD.y2=4xA[设点P(x,y),则Q(x,-1). QP·QF=FP·FQ,∴(0,y+1)·(-x,2)=(x,y-1)·(x,-2),即2(y+1)=x2-2(y-1),整理得x2=4y,∴动点P的轨迹C的方程为x2=4y.]3.(2020·静安区二模)方程2x2-9xy+8y2=0的曲线C所满足的性质为()①不经过第二、四象限;②关于x轴对称;③关于原点对称;④关于直线y=x对称.A.①③B.②③C.①④D.①②A[由题意,2x2-9xy+8y2=0化为:9xy=2x2+8y2≥0,说明x,y同号或同时为0,所以图形不经过第二、四象限,①正确;-y换y,方程发生改变,所以图形不关于x轴对称,所以②不正确;以-x代替x,以-y代替y,方程不变,所以③正确;方程2x2-9xy+8y2=0,x,y互换,方程化为8x2-9xy+2y2=0,方程已经改变,所以④不正确.故选A.]4.(2020·成都模拟)设C为椭圆x2+=1上任意一点,A(0,-2),B(0,2),延长AC至点P,使得|PC|=|BC|,则点P的轨迹方程为()A.x2+(y-2)2=20B.x2+(y+2)2=20C.x2+(y-2)2=5D.x2+(y+2)2=5B[如图,由椭圆方程x2+=1,得a2=5,b2=1,∴c1==2,则A(0,-2),B(0,2)为椭圆两焦点,∴|CA|+|CB|=2a=2, |PC|=|BC|,∴|PA|=|PC|+|CA|=|BC|+|CA|=2.∴点P的轨迹是以A为圆心,以2为半径的圆,其方程为x2+(y+2)2=20.故选B.]5.在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程.下表给出了一些条件及方程:条件方程①△ABC周长为10C1:y2=25②△ABC面积为10C2:x2+y2=4(y≠0)③△ABC中,∠A=90°C3:+=1(y≠0)则满足条件①,②,③的轨迹方程依次为()A.C3,C1,C2B.C1,C2,C3C.C3,C2,C1D.C1,C3,C2A[①△ABC的周长为10,即|AB|+|AC|+|BC|=10,又|BC|=4,所以|AB|+|AC|=6>|BC|,此时动点A的轨迹为椭圆,与C3对应;②△ABC的面积为10,所以|BC|·|y|=10,即|y|=5,与C1对应;③因为∠A=90°,所以AB·AC=(...