命题及其关系、充分条件与必要条件[考试要求]1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系.(2)四种命题的真假关系.①两个命题互为逆否命题,它们具有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.提醒:在四种形式的命题中,真命题的个数只能是0,2,4.3.充分条件、必要条件与充要条件的概念p⇒qp是q的充分条件,q是p的必要条件p⇒q,且qpp是q的充分不必要条件pq,且q⇒pp是q的必要不充分条件p⇔qp是q的充要条件pq,且qpp是q的既不充分也不必要条件提醒:A是B的充分不必要条件是指:A⇒B且BA,A的充分不必要条件是B是指:B⇒A且AB,弄清它们区别的关键是分清谁是条件,谁是结论.11.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于q是p的充分不必要条件.其他情况依次类推.2.充分、必要条件与集合的子集之间的关系设A={x|p(x)},B={x|q(x)}.(1)若A⊆B,则p是q的充分条件,q是p的必要条件.(2)若AB,则p是q的充分不必要条件,q是p的必要不充分条件.(3)若A=B,则p是q的充要条件.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)“x2+2x-3<0”是命题.()(2)命题“若p,则q”的否命题是“若p,则q”.()(3)当q是p的必要条件时,p是q的充分条件.()(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.()[答案](1)×(2)×(3)√(4)√二、教材习题衍生1.下列命题是真命题的是()A.矩形的对角线相等B.若a>b,c>d,则ac>bdC.若整数a是素数,则a是奇数D.命题“若x2>0,则x>1”的逆否命题A[令a=c=0,b=d=-1,则ac<bd,故B错误;当a=2时,a是素数但不是奇数,故C错误;取x=-1,则x2>0,但x<1,故D错误.]2.命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”C[根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.故选C.]3.“(x-1)(x+2)=0”是“x=1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件B[若x=1,则(x...