分享
专题26圆的有关计算(共52题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
全国通用 专题 26 有关 计算 52 2021 年中 数学 真题分项 汇编 原卷版 全国 通用 01
2021年中考数学真题分项汇编【全国通用】(第01期) 专题26圆的有关计算(共52题) 一、单选题 1.(2021·四川广元市·中考真题)如图,从一块直径是2的圆形铁片上剪出一个圆心角为的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( ) A. B. C. D.1 2.(2021·浙江衢州市·中考真题)已知扇形的半径为6,圆心角为.则它的面积是( ) A. B. C. D. 3.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,,小强从走到,走便民路比走观赏路少走( )米. A. B. C. D. 4.(2021·四川遂宁市·中考真题)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F,若⊙O的半径为,∠CDF=15°, 则阴影部分的面积为( ) A. B. C. D. 5.(2021·浙江中考真题)如图,已知在矩形中,,点是边上的一个动点,连结,点关于直线的对称点为,当点运动时,点也随之运动.若点从点运动到点,则线段扫过的区域的面积是( ) A. B. C. D. 6.(2021·山东枣庄市·中考真题)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为(  ) A.π﹣1 B.π﹣2 C.π﹣3 D.4﹣π 7.(2021·青海中考真题)如图,一根5米长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只羊(羊在草地上活动),那么羊在草地上的最大活动区域面积是( )平方米. A. B. C. D. 8.(2021·湖北荆州市·中考真题)如图,在菱形中,,,以为圆心、长为半径画,点为菱形内一点,连接,,.当为等腰直角三角形时,图中阴影部分的面积为( ) A. B. C. D. 9.(2021·四川广元市·中考真题)如图,在边长为2的正方形中,是以为直径的半圆的切线,则图中阴影部分的面积为( ) A. B. C.1 D. 10.(2021·江苏苏州市·中考真题)如图,线段,点、在上,.已知点从点出发,以每秒1个单位长度的速度沿着向点移动,到达点后停止移动,在点移动过程中作如下操作:先以点为圆心,、的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点的移动时间为(秒).两个圆锥的底面面积之和为.则关于的函数图像大致是( ) A. B. C. D. 11.(2021·山东东营市·中考真题)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为( ) A.214° B.215° C.216° D.217° 12.(2021·四川成都市·中考真题)如图,正六边形的边长为6,以顶点A为圆心,的长为半径画圆,则图中阴影部分的面积为( ) A. B. C. D. 13.(2021·云南中考真题)如图,等边的三个顶点都在上,是的直径.若,则劣弧的长是( ) A. B. C. D. 14.(2021·湖北中考真题)用半径为,圆心角为的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为( ) A. B. C. D. 15.(2021·湖南张家界市·中考真题)如图,正方形内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,设正方形的面积为,黑色部分面积为,则的比值为( ) A. B. C. D. 16.(2021·河北中考真题)如图,点为正六边形对角线上一点,,,则的值是( ) A.20 B.30 C.40 D.随点位置而变化 二、填空题 17.(2021·黑龙江绥化市·中考真题)边长为的正六边形,它的外接圆与内切圆半径的比值是_______. 18.(2021·上海中考真题)六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________. 19.(2021·江西中考真题)如图,在边长为的正六边形中,连接,,其中点,分别为和上的动点,若以,,为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为______. 20.(2021·重庆中考真题)如图,在菱形ABCD中,对角线,,分别以点A,B,C,D为圆心,的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为__________.(结果保留) 21.(2021·四川凉山彝族自治州·中考真题)如图,将绕点C顺时针旋转得到.已知,则线段AB扫过的图形(阴影部分)的面积为__________________. 22.(2021·浙江温州市·中考真题)若扇形的圆心角为,半径为17,则扇形的弧长为______. 23.(2021·山东泰安市·中考真题)若为直角三角形,,以为直径画半圆如图所示,则阴影部分的面积为________. 24.(2021·山东聊城市·中考真题)用一块弧长16πcm的扇形铁片,做一个高为6cm的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm2 25.(2021·四川资阳市·中考真题)如图,在矩形中,,以点B为圆心,长为半径画弧,交于点E,则图中阴影部分的面积为_______. 26.(2021·江苏宿迁市·中考真题)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________. 27.(2021·湖北随州市·中考真题)如图,在中,,,,将绕点逆时针旋转角()得到,并使点落在边上,则点所经过的路径长为______.(结果保留) 28.(2021·湖南中考真题)如图,方老师用一张半径为的扇形纸板,做了一个圆锥形帽子(接缝忽略不计).如果圆锥形帽子的半径是,那么这张扇形纸板的面积是________(结果用含的式子表示). 29.(2021·浙江嘉兴市·中考真题)如图,在中,,,,点从点出发沿方向运动,到达点B时停止运动,连结,点关于直线的对称点为,连接A′C,.在运动过程中,点到直线距离的最大值是_______;点到达点时,线段扫过的面积为___________. 30.(2021·湖南衡阳市·中考真题)底面半径为3,母线长为4的圆锥的侧面积为__________.(结果保留) 31.(2021·重庆中考真题)如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F.若BD=4,∠CAB=36°,则图中阴影部分的面积为___________.(结果保留π). 32.(2021·浙江宁波市·中考真题)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,分别与相切于点C,D,延长交于点P.若,的半径为,则图中的长为________.(结果保留) 33.(2021·甘肃武威市·中考真题)如图,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,则此扇形的面积为_____. 34.(2021·浙江台州市·中考真题)如图,将线段AB绕点A顺时针旋转30°,得到线段AC.若AB=12,则点B经过的路径长度为_____.(结果保留π) 35.(2021·江苏无锡市·中考真题)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为________. 36.(2021·广东中考真题)如图,等腰直角三角形中,.分别以点B、点C为圆心,线段长的一半为半径作圆弧,交、、于点D、E、F,则图中阴影部分的面积为____. 37.(2021·黑龙江鹤岗市·中考真题)若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为,则这个圆锥的母线长为____ cm. 38.(2021·湖南怀化市·中考真题)如图,在中,,,则图中阴影部分的面积是_________.(结果保留) 39.(2021·湖北十堰市·中考真题)如图,在边长为4的正方形中,以为直径的半圆交对角线于点E,以C为圆心、长为半径画弧交于点F,则图中阴影部分的面积是_________. 40.(2021·湖南岳阳市·中考真题)如图,在中,,的垂直平分线分别交、于点、,,为的外接圆,过点作的切线交于点,则下列结论正确的是______.(写出所有正确结论的序号) ①;②;③若,则的长为;④;⑤若,则. 41.(2021·吉林长春市·中考真题)如图是圆弧形状的铁轨示意图,半径OA的长度为200米,圆心角,则这段铁轨的长度_____米,(铁轨的宽度忽略不计,结果保留π) 42.(2021·湖北宜昌市·中考真题)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为____________平方厘米.(圆周率用表示) 三、解答题 43.(2021·江苏扬州市·中考真题)如图,四边形中,,,,连接,以点B为圆心,长为半径作,交于点E. (1)试判断与的位置关系,并说明理由; (2)若,,求图中阴影部分的面积. 44.(2021·浙江丽水市·中考真题)如图,在中,,以为直径的半圆O交于点D,过点D作半圆O的切线,交于点E. (1)求证:; (2)若,求的长. 45.(2021·湖北随州市·中考真题)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷. (1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______; (2)①如图1,是边长为的正内任意一点,点为的中心,设点到各边距离分别为,,,连接,,,由等面积法,易知,可得_____;(结果用含的式子表示) ②如图2,是边长为的正五边形内任意一点,设点到五边形各边距离分别为,,,,,参照①的探索过程,试用含的式子表示的值.(参考数据:,) (3)①如图3,已知的半径为2,点为外一点,,切于点,弦,连接,则图中阴影部分的面积为______;(结果保留) ②如图4,现有六边形花坛,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形,其中点在的延长线上,且要保证改造前后花坛的面积不变,试确定点的位置,并说明理由. 46.(2021·浙江金华市·中考真题)在扇形中,半径,点P在OA上,连结PB,将沿PB折叠得到. (1)如图1,若,且与所在的圆相切于点B. ①求的度数. ②求AP的长. (2)如图2,与相交于点D,若点D为的中点,且,求的长. 47.(2021·湖南张家界市·中考真题)如图,在中,,,以点为圆心,为半径的圆交的延长线于点,过点作的平行线,交于点,连接. (1)求证:为的切线; (2)若,求弧的长. 48.(2021·四川达州市·中考真题)如图,是的直径,为上一点(不与点,重合)连接,,过点作,垂足为点.将沿翻折,点落在点处得,交于点. (1)求证:是的切线; (2)若,,求阴影部分面积. 49.(2021·湖南邵阳市·中考真题)某种冰激凌的外包装可以视为圆锥,它的底面圆直径与母线长之比为.制作这种外包装需要用如图所示的等腰三角形材料,其中,.将扇形围成圆锥时,,恰好重合. (1)求这种加工材料的顶角的大小 (2)若圆锥底面圆的直径为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留) 50.(2021·湖北黄冈市·中考真题)如图,在中,,与,分别相切于点E,F,平分,连接. (1)求证:是的切线; (2)若,的半径是1,求图中阴影部分的面积. 51.(2021·山东菏泽市·中考真题)在矩形中,,点,分别是边、上的动点,且,连接,将矩形沿折叠,点落在点处,点落在点处. (1)如图1,当与线段交于点时,求证:; (2)如图2,当点在线段的延长线上时,交于点,求证:点在线段的垂直平分线上; (3)当时,在点由点移动到中点的过程中,计算出点运动的路线长. 52.(2021·江苏南京市·中考真题)在几何体表面上,蚂蚁怎样爬行路径最短? (1)如图①,圆锥的母线长为,B为母线的中点,点A在底面圆周上,的长为.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号). (2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h. ①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示). ②设的长为a,点B在母线上,.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路. 16 / 16 原创原创精品资源学科网独家享有版权,侵权必究!

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开