课后限时集训(六十七)n次独立重复试验与二项分布建议用时:40分钟一、选择题1.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为()A.B.C.D.B[设A={第一次拿到白球},B={第二次拿到红球},则P(AB)=×,P(A)=.所以P(B|A)==.]2.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是,,,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A.B.C.D.B[甲、乙、丙三人都没有被录取的概率为P1=××=,所以三人中至少有一人被录取的概率为P=1-P1=,故选B.]3.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是()A.B.C.D.D[袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P1=,∴3次中恰有2次抽到黄球的概率P=C2=.]4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45A[令A=“第一天空气质量优”,B=“第二天空气质量优”,则P(AB)=0.6,P(A)=0.75,P(B|A)==0.8.]15.甲、乙两人练习射击,命中目标的概率分别为和,甲、乙两人各射击一次,有下列说法:①目标恰好被命中一次的概率为+;②目标恰好被命中两次的概率为×;③目标被命中的概率为×+×;④目标被命中的概率为1-×,以上说法正确的是()A.②③B.①②③C.②④D.①③C[对于说法①,目标恰好被命中一次的概率为×+×=,所以①错误,结合选项可知,排除B、D;对于说法③,目标被命中的概率为×+×+×,所以③错误,排除A.故选C.]二、填空题6.设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=,则P(Y≥2)=________.[因为随机变量X~B(2,p),Y~B(4,p),又P(X≥1)=1-P(X=0)=1-(1-p)2=,解得p=,所以Y~B,则P(Y≥2)=1-P(Y=0)-P(Y=1)=.]7.如果生男孩和生女孩的概率相等,则有3个小孩的家庭中女孩多于男孩的概率为________.[设女孩个数为X,女孩多于男孩的概率为P(X≥2)=P(X=2)+P(X=3)=C2×+C3=3×+=.]8.三个元件T1,T2,T3正常工作的概率分别为,,,将T2,T3两个元件并联后再和T1串联接入电路,如图所示,则电路不发生故障的概率为________.[三个元件T1,T2...