“备课大师”全科【9门】:免注册,不收费!http://www.eywedu.cn/8.2.6离散型随机变量的数学期望[读教材·填要点]1.离散型随机变量X的数学期望当离散型随机变量X有概率分布pi=P(X=xj),j=0,1,…,n,就称E(X)=x1p1+x2p2+…+xnpn为X的数学期望或均值.如果X是从某个总体中随机抽取的个体,X的数学期望E(X)就是总体均值μ.2.数学期望的有关公式(1)若Y=aX+b,a,b为常数,则E(aX+b)=aE(X)+b;(2)当X服从两点分布B(1,p)时,E(X)=p;(3)当X服从二项分布B(n,p)时,E(X)=np;(4)当X服从超几何分布H(N,M,n)时,E(X)=n.[小问题·大思维]1.随机变量X的均值E(X)是一个常数还是一个变量?提示:随机变量X是可变的,可以取不同的值,而数学期望(或均值)是不变的,它描述X取值的平均水平,由X的分布列唯一确定.2.若c为常数,则E(c)为何值?提示:由离散型随机变量的均值的性质E(aX+b)=aE(X)+b可知,若a=0,则E(b)=b,即若c为常数,则E(c)=c.3.E(X)与X的单位是否一致?提示:E(X)表示随机变量X的平均值,因此E(X)与X的单位是一致的.离散型随机变量的数学期望[例1]为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:(1)顾客所获的奖励额为60元的概率;(2)顾客所获的奖励额的分布列及数学期望;[解]设顾客所获的奖励额为X.(1)依题意,得P(X=60)==,即顾客所获的奖励额为60元的概率为.(2)依题意,得X的所有可能取值为20,60.P(X=60)=,P(X=20)==,即X的分布列为X2060P“备课大师”全科【9门】:免注册,不收费!http://www.eywedu.cn/“备课大师”全科【9门】:免注册,不收费!http://www.eywedu.cn/所以顾客所获的奖励额的期望为E(X)=20×+60×=40(元).解决此类问题的一般步骤为:①明确随机变量的取值,以及取每个值的试验结果;②求出随机变量取各个值的概率;③列出概率分布;④利用均值公式进行计算.1.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.(2)X...