分享
云南省昭通市重点中学2023学年高三下学期联考数学试题(含解析).doc
下载文档

ID:33948

大小:2.37MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省 昭通市 重点中学 2023 学年 下学 联考 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.给出个数 ,,,,,,其规律是:第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能( ) A.; B.; C.; D.; 2.( ) A. B. C.1 D. 3.已知随机变量X的分布列如下表: X 0 1 P a b c 其中a,b,.若X的方差对所有都成立,则( ) A. B. C. D. 4.已知命题,那么为( ) A. B. C. D. 5.已知实数,则下列说法正确的是( ) A. B. C. D. 6.已知数列满足:)若正整数使得成立,则( ) A.16 B.17 C.18 D.19 7.集合的真子集的个数为( ) A.7 B.8 C.31 D.32 8.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为( ) A.-1 B.1 C. D. 9.在中,角所对的边分别为,已知,则( ) A.或 B. C. D.或 10.若双曲线的渐近线与圆相切,则双曲线的离心率为( ) A.2 B. C. D. 11.函数与在上最多有n个交点,交点分别为(,……,n),则( ) A.7 B.8 C.9 D.10 12.若关于的不等式有正整数解,则实数的最小值为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米. 14.在直角三角形中,为直角,,点在线段上,且,若,则的正切值为_____. 15.已知,在方向上的投影为,则与的夹角为_________. 16.已知函数在点处的切线经过原点,函数的最小值为,则________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (1)当时. ①求函数在处的切线方程; ②定义其中,求; (2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围. 18.(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且. (1)求抛物线的方程; (2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值. 19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1)求曲线的极坐标方程以及曲线的直角坐标方程; (2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积. 20.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下: 1 2 3 4 5 6 7 5 8 8 10 14 15 17 (1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望. 参考公式:,,,. 21.(12分)设数列的前n项和满足,,, (1)证明:数列是等差数列,并求其通项公式﹔ (2)设,求证:. 22.(10分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为. (Ⅰ)证明:直线的斜率与的斜率的乘积为定值; (Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②. 【题目详解】 因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A. 【答案点睛】 本题考查了补充循环结构,正确读懂题意是解本题的关键. 2、A 【答案解析】 利用复数的乘方和除法法则将复数化为一般形式,结合复数的模长公式可求得结果. 【题目详解】 ,, 因此,. 故选:A. 【答案点睛】 本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题. 3、D 【答案解析】 根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论. 【题目详解】 由X的分布列可得X的期望为, 又, 所以X的方差 , 因为,所以当且仅当时,取最大值, 又对所有成立, 所以,解得, 故选:D. 【答案点睛】 本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题. 4、B 【答案解析】 利用特称命题的否定分析解答得解. 【题目详解】 已知命题,,那么是. 故选:. 【答案点睛】 本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题. 5、C 【答案解析】 利用不等式性质可判断,利用对数函数和指数函数的单调性判断. 【题目详解】 解:对于实数, ,不成立 对于不成立. 对于.利用对数函数单调递增性质,即可得出. 对于指数函数单调递减性质,因此不成立. 故选:. 【答案点睛】 利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法. 6、B 【答案解析】 计算,故,解得答案. 【题目详解】 当时,,即,且. 故, ,故. 故选:. 【答案点睛】 本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用. 7、A 【答案解析】 计算,再计算真子集个数得到答案. 【题目详解】 ,故真子集个数为:. 故选:. 【答案点睛】 本题考查了集合的真子集个数,意在考查学生的计算能力. 8、D 【答案解析】 根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果. 【题目详解】 如图所示: 因为是△的中位线, 所以到的距离等于△的边上高的一半, 所以, 由此可得, 当且仅当时,即为的中点时,等号成立, 所以, 由平行四边形法则可得,, 将以上两式相加可得, 所以, 又已知, 根据平面向量基本定理可得, 从而. 故选:D 【答案点睛】 本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题. 9、D 【答案解析】 根据正弦定理得到,化简得到答案. 【题目详解】 由,得, ∴,∴或,∴或. 故选: 【答案点睛】 本题考查了正弦定理解三角形,意在考查学生的计算能力. 10、C 【答案解析】 利用圆心到渐近线的距离等于半径即可建立间的关系. 【题目详解】 由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即, 所以,. 故选:C. 【答案点睛】 本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题. 11、C 【答案解析】 根据直线过定点,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果. 【题目详解】 由题可知:直线过定点 且在是关于对称 如图 通过图像可知:直线与最多有9个交点 同时点左、右边各四个交点关于对称 所以 故选:C 【答案点睛】 本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题. 12、A 【答案解析】 根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值. 【题目详解】 因为不等式有正整数解,所以,于是转化为, 显然不是不等式的解,当时,,所以可变形为. 令,则, ∴函数在上单调递增,在上单调递减,而,所以 当时,,故,解得. 故选:A. 【答案点睛】 本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值. 【题目详解】 以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则, 所以,所以, , 则, 则 , 当时,,则单调递减,当时,,则单调递增, 所以当时,最短,此时. 故答案为: 【答案点睛】 本题考查导数的实际应用,属于中档题. 14、3 【答案解析】 在直角三角形中设,,,利用两角差的正切公式求解. 【题目详解】 设,, 则 , 故. 故答案为:3 【答案点睛】 此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解. 15、 【答案解析】 由向量投影的定义可求得两向量夹角的余弦值,从而得角的大小. 【题目详解】 在方向上的投影为,即夹角为. 故答案为:. 【答案点睛】 本题考查求向量的夹角,掌握向量投影的定义是解题关键. 16、0 【答案解析】 求出,求出切线点斜式方程,原点坐标代入,求出的值,求,求出单调区间,进而求出极小值最小值,即可求解. 【题目详解】 ,,, 切线的方程:, 又过原点,所以,, ,. 当时,;当时,. 故函数的最小值,所以. 故答案为:0. 【答案点睛】 本题考查导数的应用,涉及到导数的几何意义、极值最值,属于中档题.. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)①;②8079;(2). 【答案解析】 (1)①时,,,利用导数的几何意义能求出函数在处

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开