温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
甘肃省
武威市
中考
数学试卷
2023年甘肃省武威市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.
1.(3分)9的算术平方根是( )
A.±3 B.±9 C.3 D.﹣3
2.(3分)若=,则ab=( )
A.6 B. C.1 D.
3.(3分)计算:a(a+2)﹣2a=( )
A.2 B.a2 C.a2+2a D.a2﹣2a
4.(3分)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为( )
A.﹣2 B.﹣1 C.﹣ D.2
5.(3分)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC的延长线于点E,则∠DEC=( )
A.20° B.25° C.30° D.35°
6.(3分)方程=的解为( )
A.x=﹣2 B.x=2 C.x=﹣4 D.x=4
7.(3分)如图,将矩形纸片ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若AB=2,BC=4,则四边形EFGH的面积为( )
A.2 B.4 C.5 D.6
8.(3分)据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是( )
年龄范围(岁)
人数(人)
90﹣91
25
92﹣93
■
94﹣95
■
96﹣97
11
98﹣99
10
100﹣101
m
A.该小组共统计了100名数学家的年龄
B.统计表中m的值为5
C.长寿数学家年龄在92﹣93岁的人数最多
D.《数学家传略辞典》中收录的数学家年龄在96﹣97岁的人数估计有110人
9.(3分)如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB与地面CD所成夹角∠ABC=50°时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF与地面的夹角∠EBC=( )
A.60° B.70° C.80° D.85°
10.(3分)如图1,正方形ABCD的边长为4,E为CD边的中点.动点P从点A出发沿AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,线段PE的长为y,y与x的函数图象如图2所示,则点M的坐标为( )
A.(4,2) B.(4,4) C.(4,2) D.(4,5)
二、填空题:本大题共6小题,每小题3分,共18分.
11.(3分)因式分解:ax2﹣2ax+a= .
12.(3分)关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,则c= (写出一个满足条件的值).
13.(3分)近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果.如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界纪录.如果把海平面以上9050米记作“+9050米”,那么海平面以下10907米记作 .
14.(3分)如图,△ABC内接于⊙O,AB是⊙O的直径,点D是⊙O上一点,∠CDB=55°,则∠ABC= °.
15.(3分)如图,菱形ABCD中,∠DAB=60°,BE⊥AB,DF⊥CD,垂足分别为B,D,若AB=6cm,则EF= cm.
16.(3分)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A处离开水面,逆时针旋转150°上升至轮子上方B处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A处(舀水)转动到B处(倒水)所经过的路程是 米.(结果保留π)
三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.
17.(4分)计算:÷×2﹣6.
18.(4分)解不等式组:.
19.(4分)化简:﹣÷.
20.(6分)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:
如图,已知⊙O,A是⊙O上一点,只用圆规将⊙O的圆周四等分.(按如下步骤完成,保留作图痕迹)
①以点A为圆心,OA长为半径,自点A起,在⊙O上逆时针方向顺次截取==;
②分别以点A,点D为圆心,AC长为半径作弧,两弧交于⊙O上方点E;
③以点A为圆心,OE长为半径作弧交⊙O于G,H两点.即点A,G,D,H将⊙O的圆周四等分.
21.(6分)为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县);B.长征会师胜利之旅(会宁县);C.西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母A,B,C,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.
(1)求小亮从中随机抽到卡片A的概率;
(2)请用画树状图或列表的方法,求两人都抽到卡片C的概率.
22.(8分)如图1,某人的一器官后面A处长了一个新生物,现需检测其到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离方案如下:
课题
检测新生物到皮肤的距离
工具
医疗仪器等
示意图
说明
如图2,新生物在A处,先在皮肤上选择最大限度地避开器官的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择距离B处9cm的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.
测量数据
∠DBN=35°,∠ECN=22°,BC=9cm
请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)
(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)
四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.
23.(7分)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x表示,分成6个等级:A.x<10;B.10≤x<15;C.15≤x<20;D.20≤x<25;E.25≤x<30;F.30≤x≤35).下面给出了部分信息:
a.八年级学生上、下两个学期期末地理成绩的统计图如图:
b.八年级学生上学期期末地理成绩在C.15≤x<20这一组的成绩是:15,15,15,15,15,16,16,16,18,18;
c.八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:
学期
平均数
众数
中位数
八年级上学期
17.7
15
m
八年级下学期
18.2
19
18.5
根据以上信息,回答下列问题:
(1)填空:m= ;
(2)若x≥25为优秀,则这200名学生八年级下学期期末地理成绩达到优秀的约有 人;
(3)你认为该校八年级学生的期末地理成绩下学期比上学期有没有提高?请说明理由.
24.(7分)如图,一次函数y=mx+n的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(3,a).
(1)求点B的坐标;
(2)用m的代数式表示n;
(3)当△OAB的面积为9时,求一次函数y=mx+n的表达式.
25.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,D是⊙O上的一点,CO平分∠BCD,CE⊥AD,垂足为E,AB与CD相交于点F.
(1)求证:CE是⊙O的切线;
(2)当⊙O的半径为5,sinB=时,求CE的长.
26.(8分)【模型建立】
(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.
①求证:AE=CD;
②用等式写出线段AD,BD,DF的数量关系,并说明理由;
【模型应用】
(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由;
【模型迁移】
(3)在(2)的条件下,若AD=4,BD=3CD,求cos∠AFB的值.
27.(10分)如图1,抛物线y=﹣x2+bx与x轴交于点A,与直线y=﹣x交于点B(4,﹣4),点C(0,﹣4)在y轴上.点P从点B出发,沿线段BO方向匀速运动,运动到点O时停止.
(1)求抛物线y=﹣x2+bx的表达式;
(2)当BP=2时,请在图1中过点P作PD⊥OA交抛物线于点D,连接PC,OD,判断四边形OCPD的形状,并说明理由;
(3)如图2,点P从点B开始运动时,点Q从点O同时出发,以与点P相同的速度沿x轴正方向匀速运动,点P停止运动时点Q也停止运动.连接BQ,PC,求CP+BQ的最小值.
2023年甘肃省武威市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.
1.【解答】解:9的算术平方根是3,
故选:C.
2.【解答】解:∵=,
∴ab=6.
故选:A.
3.【解答】解:原式=a2+2a﹣2a
=a2.
故选:B.
4.【解答】解:∵直线y=kx(k是常数,k≠0)经过第一、第三象限,
∴k>0.
故选:D.
5.【解答】解:在等边△ABC中,∠ABC=60°,
∵BD是AC边上的高,
∴BD平分∠ABC,
∴∠CBD=∠ABC=30°,
∵BD=ED,
∴∠DEC=∠CBD=30°,
故选:C.
6.【解答】解:去分母得:2x+2=x,
解得:x=﹣2,
经检验x=﹣2是分式方程的解,
故原方程的解是x=﹣2.
故选:A.
7.【解答】解:如图,设EG与FH交于点O,
∵四边形ABCD为矩形,
∴AD∥BC,AB∥CD,∠A=∠B=∠C=∠D=90°,
根据折叠的性质可得,∠AGE=∠BGE=90°,AG=BG,∠AFH=∠DFH=90°,AF=DF,
∴AD∥GE⊥BC,AB∥FH∥CD,
∴FH⊥GE,GE=BC=4,FH=AB=2,OF=OH,OG=OE,
∴四边形EFGH为菱形,
∴S菱形EFGH===4.
故选:B.
8.【解答】解:A、该小组共统计的人数为:10÷10%=100(人),故不符合题意;
B、统计表中m的值为100×5%=5(人),故不符合题意;
C、长寿数学家年龄在92﹣93岁的人数为100×35%=35,长寿数学家年龄在94﹣95岁的人数为100×14%=14(人),所以长寿数学家年龄在92﹣93岁的人数最多,故不符合题意;
D、《数学家传略辞典》中收录的数学家年龄在96﹣97岁的人数估计有2200×=242(人),故符合题意.
故选:D.
9.【解答】解:如图,
∵BM⊥CD,
∴∠CBM=90°,
∵∠ABC=50°,
∴∠ABE+∠FBM=180°﹣90°﹣50°=40°,
∵∠ABE=∠FBM,
∴∠ABE=∠FBM=20°,
∴∠EBC=20°+50°=70°.
故选:B.
10.【解答】解:由题意可知,当点P在边AB上时,y的值先减小后增大,
当点P在边BC上时,y的值逐渐减小,
∴M点的横坐标为AB的长度,纵坐标为BE的长度,
∵AB=4,EC=ED=AB=×4=2,
∴BE===2,
∴M(4,2),
故选:C.
二、填空题:本大题共6小题,每小题3分,共18分.
11.【解答】解:ax2﹣2ax+a
=a(x2﹣2x+1)
=a(x﹣1)2.
故答案为:a(x﹣1)2.
12.【解答】解:∵方程x2+2x+4c=0有两个不相等的实数根,
∴Δ=22﹣16c>0,
解得:c<.
故答案为:0(答案不唯一).
13.【解答】解:∵海平面以上9050米记作“+9050米”,
∴海平面以下10907米记作“﹣10907米”,
故答案为:﹣10907米.
14.【解答】解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠A=∠D=55°,
∴∠ABC=180°﹣∠ACB﹣∠A=35°,
故答案为:35.
15.【解答】解:连接BD交AC于O,
则AO=CO,BO=OD
∵四边形ABCD是菱形,
∴AD=AB,∠DAC=∠BAC=∠DCA=∠BCA,AC⊥BD,
∵∠DAB=60°,
∴△ABD是等边三角形,∠DAC=∠BAC=∠DCA=∠BCA=30°,
∴BD=AB=6cm,
∴AO==3(cm),
∴AC=2AO=6(cm),
∵BE⊥AB,DF⊥CD,
∴∠CDF=∠ABE=90°,
∴△CDF≌△ABE(ASA),
∴AE=CF,
∵AE=CF=(cm),
∴EF=AE+CF﹣AC=2(cm),
故答案为:2.
16.【解答】解:=(米).
故答案为:5π.
三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.
17.【解答】解:原式=3××2﹣6
=12﹣6
=6.
18.【解答】解:由x>﹣6﹣2x得:x>﹣2,
由x≤得:x≤1,
则不等式组的解集为﹣2<x≤1.
19.【解答】解:原式=﹣•
=﹣
=.
20.【解答】解:如图:点G、D、H即为所求.
21.【解答】解:(1)小亮从中随机抽到卡片A的概率为;
(2)画树状图如下:
共有9种等可能的结果,其中小亮和小刚两人都抽到卡片C的结果有1种,
∴两人都抽到卡片C的概率是.
22.【解答】解:过点A作AF⊥MN,垂足为F,
设BF=xcm,
∵BC=9cm,
∴CF=BC+BF=(x+9)cm,
在Rt△ABF中,∠ABF=∠DBN=35°,
∴AF=BF•tan35°≈0.7x(cm),
在Rt△ACF中,∠ACF=∠ECN=22°,
∴AF=CF•tan22°≈0.4(x+9)cm,
∴0.7x=0.4(x+9),
解得:x=12,
∴AF=0.7x=8.4(cm),
∴新生物A处到皮肤的距离约为8.4cm.
四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.
23.【解答】解:(1)把八年级上学期40名学生的地理成绩从小到大排列,排在中间的两个数分别为16,16,故中位数m==16.
故答案为:16;
(2)200×=35(人),
即这200名学生八年级下学期期末地理成绩达到优秀的约有35人.
故答案为:35;
(3)该校八年级学生的期末地理成绩下学期比上学期有提高,理由如下:
因为该校八年级学生的期末地理成绩下学期的平均数、众数和中位数均比上学期大,所以该校八年级学生的期末地理成绩下学期比上学期有提高.
24.【解答】解:(1)∵反比例函数y=(x>0)的图象过点B(3,a),
∴a==2,
∴点B的坐标为(3,2);
(2)∵一次函数y=mx+n的图象过点B,
∴2=3m+n,
∴n=2﹣3m;
(3)∵△OAB的面积为9,
∴,
∴n=﹣6,
∴A(0,﹣6),
∴﹣6=2﹣3m,
∴m=,
∴一次函数的表达式是y=x﹣6.
25.【解答】(1)证明:∵CE⊥AD,
∴∠E=90°,
∵CO平分∠BCD,
∴∠OCB=∠OCD,
∵OB=OC,
∴∠B=∠BCO=∠D,
∴∠D=∠OCD,
∴OC∥DE,
∴∠OCE=∠E=90°,
∵OC是圆的半径,
∴CE是⊙O的切线;
(2)解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵sinB==,
∴AC=6,
∵∠OCE=∠ACO+∠OCB=∠ACO+∠ACE=90°,
∴∠ACE=∠OCB=∠B,
∴sin∠ACE=sinB==,
解得:AE=3.6,
∴CE==4.8.
26.【解答】(1)证明:①∵△ABC和△BDE都是等边三角形,
∴AB=CB,EB=DB,∠ABC=∠EBD=60°,
∴∠ABE=∠CBD,
∴△ABE≌△CBD,
∴AE=CD;
②解:AD=BD+DF.
理由如下:
∵△BDE是等边三角形,
∴BD=DE,
∵点C与点F关于AD对称,
∴CD=DF,
∵AD=AE+DE,
∴AD=BD+DF;
(2)BD+DF=AD.
理由如下:
如图1,过点B作BE⊥AD于E,
∵点C与点F关于AD对称,
∴∠ADC=∠ADB,
又∵CD⊥BD,
∴∠ADC=∠ADB=45°,
又∵BE⊥AD,
∴△BDE是等腰直角三角形,
又∵△ABC是等腰直角三角形,
∴,∠ABC=∠EBD=45°,
∴∠ABE=∠CBD,
∴△ABE∽△CBD,
∴,CD=DF,
∴DF=AE,
∵△BDE是等腰直角三角形,
∴BD=,
∴BD+DF=,
即:BD+DF=AD.
(3)解:如图2,过点A作AG⊥BD于G,
又∵∠ADB=45°,
∴△AGD是等腰直角三角形,
又∵AD=4,
∴AG=DG=4,BD+DF=AD=8,
∵BD=3CD,CD=DF,
∴DF=2,
又∵DG=4,
∴FG=DG﹣DF=2,
在Rt△AFG中,由勾股定理得:,
∴cos∠AFB=.
27.【解答】解:(1)∵抛物线y=﹣x2+bx过点B(4,﹣4),
∴﹣16+4b=﹣4,
∴b=3,
∴y=﹣x2+3x.
答:抛物线的表达式为y=﹣x2+3x.
(2)四边形OCPD是平行四边形,理由如下:
如图1,作PD⊥OA交x轴于点H,连接PC、OD,
∵点P在y=﹣x上,
∴OH=PH,∠POH=45°,
连接BC,
∵OC=BC=4,
∴.
∴,
∴,
∴,
当xD=2时,DH=yD=﹣4+3×2=2,
∴PD=DH+PH=2+2=4,
∵C(0,﹣4),
∴OC=4,
∴PD=OC,
∵OC⊥x轴,PD⊥x轴,
∴PD∥OC,
∴四边形OCPD是平行四边形.
(3)如图2,由题意得,BP=OQ,连接BC,
在OA上方作△OMQ,使得∠MOQ=45°,OM=BC,
∵OC=BC=4,BC⊥OC,
∴∠CBP=45°,
∴∠CBP=∠MOQ,
∵BP=OQ,∠CBP=∠MOQ,BC=OM,
∴△CBP≌△MOQ(SAS),
∴CP=MQ,
∴CP+BQ=MQ+BQ≥MB(当M,Q,B三点共线时最短),
∴CP+BQ的最小值为MB,
∵∠MOB=∠MOQ+∠BOQ=45°+45°=90°,
∴,
即CP+BQ的最小值为4.
答:CP+BQ的最小值为4.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/8/4 9:22:07;用户:beishishuxue9;邮箱:beishishuxue9@;学号:20035950
第21页(共21页)