温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
四边形
解答
2023年中考数学真题知识点汇编之《四边形(解答题一)》
一.解答题(共25小题)
1.(2023•日照)如图,平行四边形ABCD中,点E是对角线AC上一点,连接BE,DE,且BE=DE.
(1)求证:四边形ABCD是菱形;
(2)若AB=10,tan∠BAC=2,求四边形ABCD的面积.
2.(2023•贵州)如图,在Rt△ABC中,∠C=90°,延长CB至D,使得BD=CB,过点A,D分别作AE∥BD,DE∥BA,AE与DE相交于点E.下面是两位同学的对话:
小星:由题目的已知条件,若连接BE,则可
证明BE⊥CD.
小红:由题目的已知条件,若连接CE,则可证明CE=DE.
(1)请你选择一位同学的说法,并进行证明;
(2)连接AD,若AD=52,CBAC=23,求AC的长.
3.(2023•徐州)如图,正方形纸片ABCD的边长为4,将它剪去4个全等的直角三角形,得到四边形EFGH.设AE的长为x,四边形EFGH的面积为y.
(1)求y关于x的函数表达式;
(2)当AE取何值时,四边形EFGH的面积为10?
(3)四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
4.(2023•徐州)【阅读理解】如图1,在矩形ABCD中,若AB=a,BC=b,由勾股定理,得AC2=a2+b2同理BD2=a2+b2,故AC2+BD2=2(a2+b2).
【探究发现】如图2,四边形ABCD为平行四边形,若AB=a,BC=b,则上述结论是否依然成立?请加以判断,并说明理由.
【拓展提升】如图3,已知BO为△ABC的一条中线,AB=a,BC=b,AC=c.
求证:BO2=a2+b22-c24.
【尝试应用】如图4,在矩形ABCD中,若AB=8,BC=12,点P在边AD上,则PB2+PC2的最小值为 .
5.(2023•深圳)(1)如图1,在矩形ABCD中,E为AD边上一点,连接BE,
①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≌△FCB;
②若S矩形ABCD=20时,则BE•CF= .
(2)如图2,在菱形ABCD中,cosA=13,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD于点F,若S菱形ABCD=24时,求EF•BC的值.
(3)如图3,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF•EG=73时,请直接写出AG的长.
6.(2023•湘潭)问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形ABCD的边BC上任意取一点G,以BG为边长向外作正方形BEFG,将正方形BEFG绕点B顺时针旋转.
特例感知:(1)当BG在BC上时,连接DF,AC相交于点P,小红发现点P恰为DF的中点,如图①.针对小红发现的结论,请给出证明;
(2)小红继续连接EG,并延长与DF相交,发现交点恰好也是DF中点P,如图②.根据小红发现的结论,请判断△APE的形状,并说明理由;
规律探究:
(3)如图③,将正方形BEFG绕点B顺时针旋转α,连接DF,点P是DF中点,连接AP,EP,AE,△APE的形状是否发生改变?请说明理由.
7.(2023•长春)如图①,在矩形ABCD中,AB=3,AD=5,点E在边BC上,且BE=2,动点P从点E出发,沿折线EB﹣BA﹣AD以每秒1个单位长度的速度运动.作∠PEQ=90°,EQ交边AD或边DC于点Q,连接PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t秒.(t>0)
(1)当点P和点B重合时,线段PQ的长为 ;
(2)当点Q和点D重合时,求tan∠PQE;
(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形,如图②,请说明理由;
(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.
8.(2023•内蒙古)如图,在菱形ABCD中,对角线AC,BD相交于点O,点P,Q分别是边BC,线段OD上的点,连接AP,QP,AP与OB相交于点E.
(1)如图1,连接QA.当QA=QP时,试判断点Q是否在线段PC的垂直平分线上,并说明理由;
(2)如图2,若∠APB=90°,且∠BAP=∠ADB,
①求证:AE=2EP;
②当OQ=OE时,设EP=a,求PQ的长(用含a的代数式表示).
9.(2023•无锡)如图,△ABC 中,点D、E分别为AB、AC的中点,延长DE到点F,使得EF=DE,连接CF.求证:
(1)△CEF≌△AED;
(2)四边形DBCF是平行四边形.
10.(2023•张家界)如图,已知点A,D,C,B在同一条直线上,且AD=BC,AE=BF,CE=DF.
(1)求证:AE∥BF;
(2)若DF=FC时,求证:四边形DECF是菱形.
11.(2023•长沙)如图,在▱ABCD中,DF平分∠ADC,交BC于点E,交AB的延长线于点F.
(1)求证:AD=AF;
(2)若AD=6,AB=3,∠A=120°,求BF的长和△ADF的面积.
12.(2023•吉林)如图,在正方形ABCD中,AB=4cm,点O是对角线AC的中点,动点P,Q分别从点A,B同时出发,点P以1cm/s的速度沿边AB向终点B匀速运动,点Q以2cm/s的速度沿折线BC﹣CD向终点D匀速运动,连接PO并延长交边CD于点M,连接QO并延长交折线DA﹣AB于点N,连接PQ,QM,MN,NP,得到四边形PQMN.设点P的运动时间为x(s)(0<x<4),四边形PQMN的面积为 y(cm2)
(1)BP的长为 cm,CM的长为 cm.(用含x的代数式表示)
(2)求y关于x的函数解析式,并写出自变量x的取值范围.
(3)当四边形PQMN是轴对称图形时,直接写出x的值.
13.(2023•东营)(1)用数学的眼光观察
如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.
(2)用数学的思维思考
如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.
(3)用数学的语言表达
如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.
14.(2023•菏泽)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠BCD,交AD于点F.求证:AE=CF.
15.(2023•兰州)综合与实践:
【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边AB上一点,DF⊥CE于点F,GD⊥DF,AG⊥DG,AG=CF,试猜想四边形ABCD的形状,并说明理由;
【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD中,E是边AB上一点,DF⊥CE于点F,AH⊥CE于点H,GD⊥DF交AH于点G,可以用等式表示线段FH,AH,CF的数量关系,请你思考并解答这个问题;
【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E是边AB上一点,AH⊥CE于点H,点M在CH上,且AH=HM,连接AM,BH,可以用等式表示线段CM,BH的数量关系,请你思考并解答这个问题.
16.(2023•吉林)【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN.转动其中一张纸条,发现四边形EFMN总是平行四边形.其判定的依据是 .
【探究提升】取两张短边长度相等的平行四边形纸条ABCD和EFGH(AB<BC,FG≤BC),其中AB=EF,∠B=∠FEH,将它们按图②放置,EF落在边BC上,FG,EH与边AD分别交于点M,N.求证:▱EFMN是菱形.
【结论应用】保持图②中的平行四边形纸条ABCD不动,将平行四边形纸条EFGH沿BC或CB平移,且EF始终在边BC上,当MD=MG时,延长CD,HG交于点P,得到图③.若四边形ECPH的周长为40,sin∠EFG=45(∠EFG 为锐角),则四边形ECPH的面积为 .
17.(2023•绥化)已知:四边形ABCD为矩形,AB=4,AD=3,点F是BC延长线上的一个动点(点F不与点C重合).连接AF交CD于点G.
(1)如图一,当点G为CD的中点时,求证:△ADG≌△FCG;
(2)如图二,过点C作CE⊥AF,垂足为E.连接BE,设BF=x,CE=y.求y关于x的函数关系式;
(3)如图三,在(2)的条件下,过点B作BM⊥BE,交FA的延长线于点M.当CF=1时,求线段BM的长.
18.(2023•河南)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.
(1)观察发现
如图1,在平面直角坐标系中,过点M(4,0)的直线l∥y轴,作△ABC关于y轴对称的图形△A1B1C1,再分别作△A1B1C1 关于x轴和直线l对称的图形△A2B2C2和△A3B3C3,则△A2B2C2可以看作是△ABC绕点O顺时针旋转得到的,旋转角的度数为 ;△A3B3C3可以看作是△ABC向右平移得到的,平移距离为 个单位长度.
(2)探究迁移
如图2,▱ABCD中,∠BAD=α(0°<α<90°),P为直线AB下方一点,作点P关于直线AB的对称点P1,再分别作点P1关于直线AD和直线CD的对称点P2和P3,连接AP,AP2,请仅就图2的情形解决以下问题:
①若∠PAP2=β,请判断β与α的数量关系,并说明理由;
②若AD=m,求P,P3两点间的距离.
(3)拓展应用
在(2)的条件下,若α=60°,AD=23,∠PAB=15°,连接P2P3,当P2P3与▱ABCD的边平行时,请直接写出AP的长.
19.(2023•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.
(1)判断四边形OCDE的形状,并说明理由;
(2)当CD=4时,求EG的长.
20.(2023•长春)将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放,点A、E,B、D依次在同一条直线上,连接AF、CD.
(1)求证:四边形AFDC是平行四边形;
(2)已知BC=6cm,当四边形AFDC是菱形时,AD的长为 cm.
21.(2023•广东)综合与实践
主题:制作无盖正方体形纸盒.
素材:一张正方形纸板.
步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;
(2)证明(1)中你发现的结论.
22.(2023•岳阳)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM=DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.
(1)你添加的条件是 (填序号);
(2)添加条件后,请证明▱ABCD为矩形.
23.(2023•郴州)已知△ABC是等边三角形,点D是射线AB上的一个动点,延长BC至点E,使CE=AD,连接DE交射线AC于点F.
(1)如图1,当点D在线段AB上时,猜测线段CF与BD的数量关系并说明理由;
(2)如图2,当点D在线段AB的延长线上时,
①线段CF与BD的数量关系是否仍然成立?请说明理由;
②如图3,连接AE.设AB=4,若∠AEB=∠DEB,求四边形BDFC的面积.
24.(2023•十堰)如图,▱ABCD的对角线AC,BD交于点O,分别以点B,C为圆心,12AC,12BD长为半径画弧,两弧交于点P,连接BP,CP.
(1)试判断四边形BPCO的形状,并说明理由;
(2)请说明当▱ABCD的对角线满足什么条件时,四边形BPCO是正方形?
25.(2023•温州)如图,已知矩形ABCD,点E在CB延长线上,点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,连结AF交EH于点G,GE=GH.
(1)求证:BE=CF;
(2)当ABFH=56,AD=4时,求EF的长.
2023年中考数学真题知识点汇编之《四边形(解答题一)》
参考答案与试题解析
一.解答题(共25小题)
1.(2023•日照)如图,平行四边形ABCD中,点E是对角线AC上一点,连接BE,DE,且BE=DE.
(1)求证:四边形ABCD是菱形;
(2)若AB=10,tan∠BAC=2,求四边形ABCD的面积.
【考点】菱形的判定与性质;解直角三角形;平行四边形的性质.菁优网版权所有
【专题】图形的全等;矩形 菱形 正方形;解直角三角形及其应用;运算能力;推理能力.
【分析】(1)连接BD交AC于O,根据平行四边形的性质得到BO=OD,根据全等三角形的判定和性质和菱形的判定即可得到结论;
(2)解直角三角形得到AO=25,BO=45,根据菱形的性质得到AC=2AO=45,BD=2BO=85,根据菱形的面积公式即可得到结论.
【解答】(1)证明:连接BD交AC于O,
∵四边形ABCD是平行四边形,
∴BO=OD,
在△BOE与△DOE中,
OB=ODOE=OEBE=DE
∴△BOE≌△DOE(SSS),
∴∠BEO=∠DEO,
在△BAE与△DAE中,
BE=DE∠AEB=∠AEDAE=AE,
∴△BAE≌△DAE(SAS),
∴AB=AD,
∴四边形ABCD是菱形;
(2)解:在Rt△ABO中,∵tan∠BAC=OBAO=2,
∴设AO=x,BO=2x,
∴AB=AO2+BO2=5x=10,
∴x=25,
∴AO=25,BO=45,
∵四边形ABCD是菱形,
∴AC=2AO=45,BD=2BO=85,
∴四边形ABCD的面积=12AC•BD=12×45×85=80.
【点评】本题考查了菱形的判定和性质,全等三角形的判定和性质,解直角三角形,正确地作出辅助线是解题的关键.
2.(2023•贵州)如图,在Rt△ABC中,∠C=90°,延长CB至D,使得BD=CB,过点A,D分别作AE∥BD,DE∥BA,AE与DE相交于点E.下面是两位同学的对话:
小星:由题目的已知条件,若连接BE,则可
证明BE⊥CD.
小红:由题目的已知条件,若连接CE,则可证明CE=DE.
(1)请你选择一位同学的说法,并进行证明;
(2)连接AD,若AD=52,CBAC=23,求AC的长.
【考点】平行四边形的判定与性质;直角三角形斜边上的中线.菁优网版权所有
【专题】等腰三角形与直角三角形;多边形与平行四边形;矩形 菱形 正方形;推理能力.
【分析】(1)小星:连接BE,根据平行四边的判定定理得到四边形ABDE是平行四边形,根据平行四边形的性质得到AE=BD,推出四边形AEBC是平行四边形,根据矩形性质得到BE⊥CD;小红:连接BE,CE,根据平行四边形的判定和性质以及矩形 的判定和性质定理即可得到论;
(2)连接AD,设CB=2k,AC=3k,根据勾股定理即可得到结论.
【解答】(1)证明:小星:连接BE,
∵AE∥BD,DE∥BA,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵BD=BC,
∴AE=BC,
∵AE∥BC,
∴四边形AEBC是平行四边形,
∵∠C=90°,
∴四边形AEBC是矩形,
∴∠EBC=90°,
∴BE⊥CD;
小红:连接BE,CE,
∵AE∥BD,DE∥BA,
∴四边形ABDE是平行四边形,
∴AE=BD,AB=DE,
∵BD=BC,
∴AE=BC,
∵AE∥BC,
∴四边形AEBC是平行四边形,
∵∠C=90°,
∴四边形AEBC是矩形,
∴AB=CE,
∴DE=CE;
(2)连接AD,
∵CBAC=23,
∴设CB=2k,AC=3k,
∴CD=4k,
∵AC2+DC2=AD2,
∴(3k)2+(4k)2=(52)2,
∴k=2,
∴AC=32.
【点评】本题考查了平行四边形 的判定和性质,勾股定理,矩形的判定,熟练掌握平行四边形的性质是解题的关键.
3.(2023•徐州)如图,正方形纸片ABCD的边长为4,将它剪去4个全等的直角三角形,得到四边形EFGH.设AE的长为x,四边形EFGH的面积为y.
(1)求y关于x的函数表达式;
(2)当AE取何值时,四边形EFGH的面积为10?
(3)四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
【考点】四边形综合题.菁优网版权所有
【专题】代数几何综合题;运算能力;推理能力.
【分析】(1)根据正方形和全等三角形的性质得到AB=AD=BC=CD=4,AE=DH=x,BE=AH=4﹣x,∠A=∠D=90°,EH=HG=FG=EF,∠AEH=∠GHD,根据勾股定理即可得到结论;
(2)当解方程即可得到结论;
(3)把二次函数化成顶点式,根据二次函数的性质即可得到结论.
【解答】解:(1)∵正方形纸片ABCD的边长为4,4个直角三角形全等,
∴AB=AD=BC=CD=4,AE=DH=x,BE=AH=4﹣x,∠A=∠D=90°,EH=HG=FG=EF,∠AEH=∠GHD,∵∠AEH+∠AHE=90°,
∴∠AHE+∠DHG=90°,
∴∠EHG=90°,
∴四边形EFGH是正方形,
∴y=AE2+AH2=x2+(4﹣x)2=2x2﹣8x+16;
(2)当y=10时,即2x2﹣8x+16=10,
解得x=1或x=3,
答:当AE取1或3时,四边形EFGH的面积为10;
(3)∵y=2x2﹣8x+16=2(x﹣2)2+8,
∵2>0,
∴y有最小值,最小值为8.
即四边形EFGH的面积有最小值,最小值为8.
【点评】本题是四边形的综合题,考查了勾股定理,正方形 的判定和性质,全等三角形的性质,二次函数的性质,熟练掌握正方形和全等三角形的性质是解题的关键.
4.(2023•徐州)【阅读理解】如图1,在矩形ABCD中,若AB=a,BC=b,由勾股定理,得AC2=a2+b2同理BD2=a2+b2,故AC2+BD2=2(a2+b2).
【探究发现】如图2,四边形ABCD为平行四边形,若AB=a,BC=b,则上述结论是否依然成立?请加以判断,并说明理由.
【拓展提升】如图3,已知BO为△ABC的一条中线,AB=a,BC=b,AC=c.
求证:BO2=a2+b22-c24.
【尝试应用】如图4,在矩形ABCD中,若AB=8,BC=12,点P在边AD上,则PB2+PC2的最小值为 200 .
【考点】四边形综合题.菁优网版权所有
【专题】几何综合题;运算能力;推理能力.
【分析】【阅读理解】根据矩形对角线相等可得AC=BD,最后由勾股定理可得结论;
【探究发现】首先作AE⊥BC于E,DF⊥BC于F,根据全等三角形判定的方法,判断出△ABE≌△DCF,即可判断出AE=DF,BE=CF;然后根据勾股定理,可得AC2=AE2+(BC﹣BE)2,BD2=DF2+(BC+BE)2,AB2=AE2+BE2,再根据AB=DC,AD=BC,即可推得结论;
【拓展提升】根据平行四边形的判定定理得到四边形ABCE是平行四边形,由【探究发现】,可得BE2+AC2=2AB2+2BC2,于是得到结论;
【尝试应用】过P作PH⊥BC于H,根据矩形的性质得到AB=PH=CD=8,AP=BH,PD=CH,设BH=x,CH=12﹣x,根据勾股定理和二次函数的性质即可得到结论.
【解答】【阅读理解】解:如图1,
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,
∴AC2=AB2+BC2,
∵AB=a,BC=b,
∴AC2+BD2=2(AB2+BC2)=2a2+2b2;
【探究发现】解:上述结论依然成立,
理由:如图②,作AE⊥BC于E,DF⊥BC于F,
∵四边形ABCD是平行四边形,
∴AB∥DC,且AB=DC,
∴∠ABE=∠DCF,
在△ABE和△DCF中,
∠ABE=∠DCF∠AEB=∠DFC=90°AB=DC,
∴△ABE≌△DCF(AAS),
∴AE=DF,BE=CF,
在Rt△ACE中,由勾股定理,可得
AC2=AE2+CE2=AE2+(BC﹣BE)2…①,
在Rt△BDF中,由勾股定理,可得
BD2=DF2+BF2=DF2+(BC+CF)2=DF2+(BC+BE)2…②,
由①②,可得
AC2+BD2=AE2+DF2+2BC2+2BE2=2AE2+2BC2+2BE2,
在Rt△ABE中,由勾股定理,可得
AB2=AE2+BE2,
∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2=2AB2+2BC2=2a2+2b2;
【拓展提升】证明:如图3,延长BO至点E,使BO=OE,
∵BO是BC边上的中线,
∴AO=CD,
又∵AD=CO,
∴四边形ABCE是平行四边形,
由【探究发现】,可得BE2+AC2=2AB2+2BC2,
∵BE=2BO,
∴BE2=4BO2,
∵AB=a,BC=b,AC=c,
∴4BO2+c2=2a2+2b2,
∴BO2=a2+b22-c24.
【尝试应用】解:过P作PH⊥BC于H,
则四边形APHB和四边形PHCD是矩形,
∴AB=PH=CD=8,AP=BH,PD=CH,
设BH=x,CH=12﹣x,
∴PB2+PC2=PH2+BH2+PH2+CH2=82+x2+82+(12﹣x)2=2x2﹣24x+272=2(x﹣6)2+200,
故PB2+PC2的最小值为200,
故答案为:200.
【点评】本题是四边形综合题,考查了全等三角形的判定和性质的应用,平行四边形判定和性质的应用,以及勾股定理的应用,构建直角三角形利用勾股定理列式是解本题的关键.
5.(2023•深圳)(1)如图1,在矩形ABCD中,E为AD边上一点,连接BE,
①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≌△FCB;
②若S矩形ABCD=20时,则BE•CF= 20 .
(2)如图2,在菱形ABCD中,cosA=13,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD于点F,若S菱形ABCD=24时,求EF•BC的值.
(3)如图3,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF•EG=73时,请直接写出AG的长.
【考点】四边形综合题.菁优网版权所有
【专题】多边形与平行四边形;图形的相似;解直角三角形及其应用;运算能力;推理能力.
【分析】(1)①根据矩形的性质得出∠ABE+∠CBF=90°,∠CFB=∠A=90°,进而证明∠FCB=∠ABE 结合已知条件,即可证明△ABE≌△FCB; ②由①可得∠FCB=∠ABE,∠CFB=∠A=90°,证明△ABE∽△FCB,得出 ABCF=BEBC,根据S矩形ABCD=AB•CD=20,即可求解;
(2)根据菱形的性质得出AD∥BC,AB=BC,根据已知条件得出BE=13BCAE=43AB,证明△AFE∽△BEC,根据相似三角形的性质即可求解;
(3)分三种情况讨论,①当点G在AD边上时,如图所示,延长FE交AD的延长线于点M,连接GF,过点E作EH⊥DM 于点H,证明△EDM∽△ECF,解Rt△DEH,进而得出 MG=7,根据 tan∠MEH=tan∠HGE,得出 HE2=HM•HG,建立方程解方程即可求解;②当G点在AB边上时,如图所示,连接GF,延长GE交BC的延长线于点M,过 点G作GN∥AD,则GN∥BC,四边形ADNG是平行四边形,同理证明△ENG∽△ECM,根据 tan∠FEH=tan∠M得出 EH2=FH•HM,建立方程,解方程即可求解;③当G点在BC边上时,如图所示,过点B作BT⊥DC于点T,求得 S△BTC=2538,而 S△EFG=723,得出矛盾,则此情况不存在.
【解答】解:(1)①∵四边形ABCD是矩形,则∠A=∠ABC=90°,
∴∠ABE+∠CBF=90°,
又∵CF⊥BC,
∴∠FCB+∠CBF=90°,∠CFB=∠A=90°,
∴∠FCB=∠ABE,
又∵BC=BE,
∴△ABE≌△FCB(AAS);
②由①可得∠FCB=∠ABE,∠CFB=∠A=90°,
∴△ABE∽△FCB.
∴ABCF=BEBC,
又∵S矩形ABCD=AB•CD=20,
∴BE•CF=AB•BC=20,
(2)∵在菱形ABCD中,cosA=13,
∴AD∥BC,AB=BC,则∠CBE=∠A,
∵CE⊥AB,∠CEB=90°,
∴cos∠CBE=BECB,
∴BE=BC⋅cos∠CBE=BC×cos∠A=13BC,
1∴AE=AB+BE=AB+13BC=AB+13AB=43AB,
∵EF⊥AD,CE⊥AB,
∴∠AFE=∠BEC=90°,
又∵∠CBE=∠A,
∴△AFE∽△BEC,
∴.AEBC=EFCE=AFBE,
∴EF•BC=AE•CE=43AB×CE=43S菱形ABCD=43×24=32;
(3)①当点G在AD边上时,如图所示,延长FE交AD的延长线于点M,连接GF,过点E作 EH⊥DM于点H,
∵平行四边形ABCD中,AB=6,CE=2,
∴CD=AB=6,
DE=DC﹣EC=6﹣2=4,
∵DM∥FC,
∴△EDM∽△ECF,
∴EMEF=EDEC=42=2,
SMGESFEG=EMEF=2,
∴S△MGE=2S△EFG=EF•EG=73,
在Rt△DEH 中,∠HDE=∠A=60°,
则 EH=32DE=32×4=23,DH=12DE=2,
1∴12MG×HE=73,
∴MG=7,
∵GE⊥EF,EH⊥MG,∠MEH=90°﹣∠HEG=∠HGE,
∴tan∠MEH=tan∠HGE,
∵HEHG=HMHE,
∴HE2=HM•HG,
设AG=a,则GD=AD﹣AG=5﹣a,
GH=GD+HD=5﹣a+2=7﹣a,HM=GM﹣GH=7﹣(7﹣a)=a,
(23)2=x(7-x),
解得:a=3或a=4,
即AG=3或 AG=4,
②当G点在AB边上时,如图所示,
连接GF,延长GE交BC的延长线于点M,过点G作GN∥AD,则GN∥BC,四边形ADNG是平行四边形,
设AG=x,则 DN=AG=x,EN=DE﹣DN=4﹣x,
∵GN∥CM,
∴△ENG∽△ECM,
∴.EGFM=ENEC=GNCM=4-x2,
∴CM=2GN4-x=104-x,
∴.S△GEFS△MEF=EGEM=4-x2,
∵EF•EG=73,
∴S△MEF=2S△GEF4-x=734-x,
过点E作EH⊥BC于点H,
在Rt△EHC中,EC=2,∠ECH=60°,
∴EH=3,CH=1,
∴S△MEF=12×MF×EH,
则 12×3×MF=734-x,
∴MF=144-x,
∴FH=MF-CM-CH=144-x-104-x-1=x4-x,MH=CM+CH=104-x+1=14-x4-x,
∵∠MEF=∠EHM=90°,∠FEH=90°﹣∠MEH=∠M,
∴tan∠FEH=tan∠M,
即 FHEH=EHHM,
∴EH2=FH•HM,
即 (3)2=x4-x×14-x4-x,
解得:x1=32x2=8 (舍去),
即 AG=32;
③当G点在BC边上时,如图所示,
过点B作BT⊥DC于点T,
在Rt△BTC 中,CT=12BC=52,
BT=3TC=532,
S△BTC=12BT×TC=12×532×52=2538,
EF•EG=73,
∴S△EFG=723,
∵2583<723,
∴G点不可能在BC边上,综上所述,AG的长为3或4或 32.
【点评】本题考查了相似三角形的性质与判定,平行四边形的性质,解直角三角形,矩形的性质,熟练掌握相似三角形的性质与判定,分类讨论是解题的关键.
6.(2023•湘潭)问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形ABCD的边BC上任意取一点G,以BG为边长向外作正方形BEFG,将正方形BEFG绕点B顺时针旋转.
特例感知:(1)当BG在BC上时,连接DF,AC相交于点P,小红发现点P恰为DF的中点,如图①.针对小红发现的结论,请给出证明;
(2)小红继续连接EG,并延长与DF相交,发现交点恰好也是DF中点P,如图②.根据小红发现的结论,请判断△APE的形状,并说明理由;
规律探究:
(3)如图③,将正方形BEFG绕点B顺时针旋转α,连接DF,点P是DF中点,连接AP,EP,AE,△APE的形状是否发生改变?请说明理由.
【考点】四边形综合题.菁优网版权所有
【专题】图形的全等;等腰三角形与直角三角形;矩形 菱形 正方形;推理能力.
【分析】(1)延长FG,交AC于H,可推出FG=BG,CG=GH,从而CD=FH,进而得出△CDP≌△HFP,进一步得出结论;
(2)延长EG,交AD的延长线于点M,设DF和EG交于点Q,同理(1)可证得△DQM≌△FQE,从而DQ=FQ,从而得出点Q和点P重合,进一步得出结论;
(3)延长EP至Q,是PQ=PE,连接DQ,延长DA和FE,交于点N,△PDQ≌△PFE,从而DQ=EF,∠PQD=∠PEF,所以∠N+∠ADQ=180°,可推出∠N+∠ABE=180°,进而推出△ADQ≌△ABE,AE=AQ,∠DAQ=∠BAE,进而推出∠QAE=90°,进一步得出结论.
【解答】解:(1)如图1,
延长FG,交AC于H,
∵四边形ABCD和四边形BEFG是正方形,
∴BC=CD,FG=BG,CD∥AE,FG∥AE,∠CGH=∠BGF=90°,
∴∠CHG=45°,CD∥FG,
∴∠ACB=∠CHG,∠CDP=∠HFP,∠DCP=∠FHP,
∴CG=GH,
∴CG+BG=GH+FG,
∴BC=FH,
∴CD=FH,
∴△CDP≌△HFP(ASA),
∴点P是DF的中点;
(2)如图2,
△APE是等腰直角三角形,理由如下:
延长EG,交AD的延长线于点M,设DF和EG交于点Q,
∵四边形ABCD和四边形BEFG是正方形,
∴∠BAD=90°,∠BEG=45°,AD=AB,BE=EF,AD∥BC∥EF,∠BAC=45°,
∴∠M=45°,∠M=∠GEF,∠MDQ=∠EFQ,
∴∠M=∠BEG,
∴AM=AE,
∴AM﹣AD=AE﹣AB,
∴DM=BE,
∴DM=EF,
∴△DQM≌△FQE(ASA),
∴DQ=FQ,
∴点Q和点P重合,即:EG与DF的交点恰好也是DF中点P,
∵∠BAC=45°,∠BEG=45°,
∴∠APE=90°,AP=EP,
∴△APE是等腰直角三角形;
(3)如图3,
△APE仍然是等腰直角三角形,理由如下:
延长EP至Q,是PQ=PE,连接DQ,延长DA和FE,交于点N,
∵DP=PF,∠DPQ=∠EPF,
∴△PDQ≌△PFE(SAS),
∴DQ=EF,∠PQD=∠PEF,
∴∠N+∠ADQ=180°,
∵四边形ABCD和四边形BEFG是正方形,
∴∠BAN=∠DAB=90°,∠BEN=∠BEF=90°,AB=AD,BE=EF,
∴∠N+∠ABE=360°﹣∠BAN﹣∠BEN=360°﹣90°﹣90°=180°,DQ=BE,
∴∠ABE=∠ADQ,
∴△ADQ≌△ABE(SAS),
∴AE=AQ,∠DAQ=∠BAE,
∴∠BAE+∠BAQ=∠DAQ+∠BAQ=∠BAD=90°,
∴∠QAE=90°,
∴AP⊥EQ,AP=PE=12EQ,
∴△APE是等腰直角三角形.
【点评】本题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解决问题的关键是“倍长中线”.
7.(2023•长春)如图①,在矩形ABCD中,AB=3,AD=5,点E在边BC上,且BE=2,动点P从点E出发,沿折线EB﹣BA﹣AD以每秒1个单位长度的速度运动.作∠PEQ=90°,EQ交边AD或边DC于点Q,连接PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t秒.(t>0)
(1)当点P和点B重合时,线段PQ的长为 13 ;
(2)当点Q和点D重合时,求tan∠PQE;
(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形,如图②,请说明理由;
(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.
【考点】四边形综合题.菁优网版权所有
【专题】几何综合题;矩形 菱形 正方形;几何直观;运算能力;推理能力.
【分析】(1)证明四边形ABEQ是矩形,进而在Rt△QBE中,勾股定理即可求解.
(2)证明△PBE∽△ECD,得出 tan∠PQE=PEDE=BECD=23.
(3)过点P作PH⊥BC 于点H,证明△PHE≌△ECQ得出PE=QE,即可得出结论.
(4)分三种情况讨论,①如图所示,当点P在BE上时,②当P点在AB上时,当F,A重合时符合题意,此时如图,③当点P在AD上,当F,D重合时,此时Q与点C重合,则PFQE是正方形,即可求解.
【解答】解:如图所示,连接BQ,
∵四边形ABCD是矩形,
∴∠BAQ=∠ABE=90°,
∵∠PEQ=90°,
∴四边形ABEQ是矩形,
当点P和点B重合时,
∴QE=AB=3,BE=2,
在Rt△QBE中,BQ=BE2+QE2=32+22=13,
故答案为:13.
(2)如图所示,
∵∠PEQ=90°,∠PBE=∠ECD=90°,
∴∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3,
∴△PBE∽△ECD,
∴PEDE=BECD,
∵BE=2,CD=AB=3,
∴tan∠PQE=PEDE=BECD=23.
(3)如图所示,过点P作PH⊥BC于点H,
∵∠PEQ=90°,∠PHE=∠ECQ=90°,
∴∠1+∠2=90°,∠2+∠3=90°,
则四边形ABHP是矩形,
∴PH=AB=3,
又∵EC=BC﹣BE=5﹣2=3,
∴PH=EC,
∴△PHE≌ECQ(AAS),
∴PE=QE,
∴△PQE 是等腰直角三角形;
(4)①如图所示,当点P在BE上时,
∵QE=QF=3,AQ=BE=2,
在Rt△AQF中,A