温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题16
等腰三角形与直角三角形原卷版
专题
16
等腰三角形
直角三角形
原卷版
原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 1 专题专题 16 等腰三角形与直角三角形等腰三角形与直角三角形(共共 26 道道)一、单选题一、单选题 1(2023 江苏徐州 统考中考真题)如图,在ABC中,90,30,2,BABCD为AB的中点若点E在边AC上,且ADDEABBC,则AE的长为()A1 B2 C1 或32 D1 或 2 2(2023 甘肃兰州 统考中考真题)如图,在矩形ABCD中,点 E 为BA延长线上一点,F为CE的中点,以B 为圆心,BF长为半径的圆弧过AD与CE的交点 G,连接BG若4AB,10CE,则AG()A2 B2.5 C3 D3.5 3(2023 北京 统考中考真题)如图,点 A、B、C在同一条线上,点 B在点 A,C之间,点 D,E 在直线AC同侧,ABBC,90AC,EABBCD,连接 DE,设ABa=,BCb,DEc,给出下面三个结论:abc;22abab;2 abc;上述结论中,所有正确结论的序号是()A B C D 原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 2 4(2023 江苏无锡 统考中考真题)如图ABC中,90,4,ACBABACxBAC,O为AB中点,若点D为直线BC下方一点,且BCD与ABC相似,则下列结论:若45,BC与OD相交于E,则点E不一定是ABD的重心;若60,则AD的最大值为2 7;若60,ABCCBD,则OD的长为2 3;若ABCBCD,则当2x 时,ACCD取得最大值其中正确的为()A B C D 5(2023 浙江 统考中考真题)如图,在四边形ABCD中,,45ADBCC,以AB为腰作等腰直角三角形BAE,顶点E恰好落在CD边上,若1AD,则CE的长是()A2 B22 C2 D1 6(2023 四川眉山 统考中考真题)如图,在正方形ABCD中,点 E 是CD上一点,延长CB至点 F,使B F D E,连结,AE AF EF,EF交AB于点 K,过点 A 作AGEF,垂足为点 H,交CF于点 G,连结HDHC,下列四个结论:AHHC;HDCD;FABDHE;22AK HDHE其中正确结论的个数为()A1 个 B2 个 C3 个 D4 个 原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 3 二、填空题二、填空题 7(2023 湖南 统考中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4dm的正方形纸板制作了一副七巧板(如图),由 5 个等腰直角三角形,1 个正方形和 1 个平行四边形组成则图中阴影部分的面积为_3dm 8(2023 天津 统考中考真题)如图,在边长为 3 的正方形ABCD的外侧,作等腰三角形ADE,52EAED (1)ADEV的面积为_;(2)若 F为BE的中点,连接AF并延长,与CD相交于点 G,则AG的长为_ 9(2023 河南 统考中考真题)矩形ABCD中,M 为对角线BD的中点,点 N在边AD上,且1ANAB 当以点 D,M,N为顶点的三角形是直角三角形时,AD的长为_ 10(2023 湖北 统考中考真题)如图,,BACDEB和AEF都是等腰直角三角形,90BACDEBAEF,点E在ABC内,BEAE,连接DF交AE于点,G DE交AB于点H,连接CF给出下面四个结论:DBAEBC;BHEEGF;ABDF;ADCF其中所有正确结论的序号是_ 原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 4 11(2023 山东 统考中考真题)如图,ABC是边长为 6 的等边三角形,点DE,在边BC上,若30DAE,1tan3EAC,则BD _ 12(2023 山东日照 统考中考真题)如图,矩形ABCD中,68ABAD,点 P在对角线BD上,过点 P作MNBD,交边ADBC,于点 M,N,过点 M 作MEAD交BD于点 E,连接ENBMDN,下列结论:EMEN;四边形MBND的面积不变;当:1:2AM MD 时,9625MPES;BMMNND的最小值是 20其中所有正确结论的序号是_ 13(2023 四川遂宁 统考中考真题)如图,以ABC的边AB、AC为腰分别向外作等腰直角ABE、ACD,连结ED、BD、EC,过点A的直线l分别交线段DF、BC于点M、N,以下说法:当ABACBC时,30AED;ECBD;若3AB,4AC,6BC,则2 3DE;当直线lBC时,点M为线段DE的中点正确的有_(填序号)原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 5 14(2023 四川眉山 统考中考真题)如图,在平面直角坐标系xOy中,点 B的坐标为8 6,过点 B 分别作 x 轴、y轴的垂线,垂足分别为点 C、点 A,直线26yx 与AB交于点 D与 y 轴交于点 E动点 M 在线段BC上,动点 N在直线26yx 上,若AMN是以点 N为直角顶点的等腰直角三角形,则点 M的坐标为_ 15(2023 江苏苏州 统考中考真题)如图,90,3 2BACABAC 过点C作CDBC,延长CB到E,使13BECD,连接,AE ED若2EDAE,则BE _(结果保留根号)16(2023 山西 统考中考真题)如图,在四边形ABCD中,90BCD,对角线,AC BD相交于点O若5,6,2ABACBCADBCBD,则AD的长为_ 原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 6 17(2023 湖北十堰 统考中考真题)在某次数学探究活动中,小明将一张斜边为 4 的等腰直角三角形90ABCA硬纸片剪切成如图所示的四块(其中 D,E,F分别为AB,AC,BC的中点,G,H 分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为_,最大值为_ 三、解答题三、解答题 18(2023 北京 统考中考真题)在ABC中、045BC,AMBC于点 M,D是线段MC上的动点(不与点 M,C重合),将线段DM绕点 D 顺时针旋转2得到线段DE (1)如图 1,当点 E 在线段AC上时,求证:D 是MC的中点;(2)如图 2,若在线段BM上存在点 F(不与点 B,M 重合)满足DFDC,连接AE,EF,直接写出AEF的大小,并证明 原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 7 19(2023 黑龙江 统考中考真题)如图,ABC和ADEV是等边三角形,连接DC,点 F,G,H 分别是,DE DC和BC的中点,连接,FG FH易证:3FHFG 若ABC和ADEV都是等腰直角三角形,且90BACDAE,如图:若ABC和ADEV都是等腰三角形,且120BACDAE,如图:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图或图进行证明 20(2023 黑龙江齐齐哈尔 统考中考真题)综合与实践 数学模型可以用来解决一类问题,是数学应用的基本途径通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地 (1)发现问题:如图 1,在ABC和AEF中,ABAC,AEAF,30BACEAF,连接BE,CF,原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 8 延长BE交CF于点D则BE与CF的数量关系:_,BDC_;(2)类比探究:如图 2,在ABC和AEF中,ABAC,AEAF,120BACEAF,连接BE,CF,延长BE,FC交于点D请猜想BE与CF的数量关系及BDC的度数,并说明理由;(3)拓展延伸:如图 3,ABC和AEF均为等腰直角三角形,90BACEAF,连接BE,CF,且点B,E,F在一条直线上,过点A作AMBF,垂足为点M则BF,CF,AM之间的数量关系:_;(4)实践应用:正方形ABCD中,2AB,若平面内存在点P满足90BPD,1PD,则ABPS_ 21(2023 四川成都 统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究 在RtABC中,90,CACBC,D 是AB边上一点,且1ADBDn(n 为正整数),E 是AC边上的动点,过点 D 作DE的垂线交直线BC于点 F 【初步感知】(1)如图 1,当1n 时,兴趣小组探究得出结论:22AEBFAB,请写出证明过程【深入探究】(2)如图 2,当2n,且点 F在线段BC上时,试探究线段AEBFAB,之间的数量关系,请写出结论并证明;请通过类比、归纳、猜想,探究出线段AEBFAB,之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图 3,连接EF,设EF的中点为 M若2 2AB,求点 E从点 A运动到点 C的过程中,点 M 运动的路径长(用含 n 的代数式表示)原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 9 22(2023 吉林长春 统考中考真题)如图 在矩形ABCD35ABAD,点E在边BC上,且2BE 动点P从点E出发,沿折线EBBAAD以每秒1个单位长度的速度运动,作90PEQ,EQ交边AD或边DC于点Q,连续PQ当点Q与点C重合时,点P停止运动设点P的运动时间为t秒(0t)(1)当点P和点B重合时,线段PQ的长为_;(2)当点Q和点D重合时,求tanPQE;(3)当点P在边AD上运动时,PQE的形状始终是等腰直角三角形如图请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围 23(2023 甘肃武威 统考中考真题)【模型建立】(1)如图 1,ABC和BDE都是等边三角形,点C关于AD的对称点F在BD边上 求证:AECD;用等式写出线段AD,BD,DF的数量关系,并说明理由【模型应用】(2)如图 2,ABC是直角三角形,ABAC,CDBD,垂足为D,点C关于AD的对称点F在BD边上 用等式写出线段AD,BD,DF的数量关系,并说明理由【模型迁移】(3)在(2)的条件下,若4 2AD,3BDCD,求cosAFB的值 原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 10 24(2023 重庆 统考中考真题)如图,在等边ABC中,ADBC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60得到线段CF,连接AF (1)如图 1,求证:CBECAF;(2)如图 2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EHFH;(3)如图 3,连接BF交AC于点G,连接DG,EG,将AEG沿AG所在直线翻折至ABC所在平面内,得到APG,将DEG沿DG所在直线翻折至ABC所在平面内,得到DQG,连接PQ,QF若4AB,直接写出PQQF的最小值 原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 11 25(2023 湖南岳阳 统考中考真题)如图 1,在ABC中,ABAC,点,M N分别为边,AB BC的中点,连接MN 初步尝试:(1)MN与AC的数量关系是_,MN与AC的位置关系是_ 特例研讨:(2)如图 2,若9 0,4 2B A CB C,先将BMN绕点B顺时针旋转(为锐角),得到BEF,当点,A E F在同一直线上时,AE与BC相交于点D,连接CF (1)求BCF的度数;(2)求CD的长 深入探究:(3)若90BAC,将BMN绕点B顺时针旋转,得到BEF,连接AE,CF当旋转角满足0360,点,C E F在同一直线上时,利用所提供的备用图探究BAE与ABF的数量关系,并说明理由 原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份 有限公司 12