分享
专题12二次函数压轴解答题(共44道)-2020年中考数学真题分项汇编(原卷版)【全国通用】.docx
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
全国通用 专题 12 二次 函数 压轴 解答 44 2020 年中 数学 真题分项 汇编 原卷版 全国 通用
2020年中考数学真题分项汇编(全国通用) 专题12二次函数压轴解答题(共44道) 一.解答题(共44小题) 1.(2020•衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0). (1)求这个二次函数的表达式; (2)求当﹣2≤x≤1时,y的最大值与最小值的差; (3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围. 2.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点. (1)求抛物线的解析式及点G的坐标; (2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围. 3.(2020•凉山州)如图,二次函数y=ax2+bx+x的图象过O(0,0)、A(1,0)、B(32,32)三点. (1)求二次函数的解析式; (2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式; (3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标. 4.(2020•黑龙江)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6. (1)求a的值; (2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由. 5.(2020•杭州)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0). (1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式. (2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(1r,0). (3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值. 6.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点. (1)判断点B是否在直线y=x+m上,并说明理由; (2)求a,b的值; (3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值. 7.(2020•陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l. (1)求该抛物线的表达式; (2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标. 8.(2020•武威)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点. (1)求此抛物线的表达式; (2)若PC∥AB,求点P的坐标; (3)连接AC,求△PAC面积的最大值及此时点P的坐标. 9.(2020•齐齐哈尔)综合与探究 在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①. (1)求抛物线的解析式; (2)直线AB的函数解析式为   ,点M的坐标为   ,cos∠ABO=   ; 连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为   ; (3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标; (4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由. 10.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q. (1)求抛物线的表达式; (2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少? (3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由. 11.(2020•上海)在平面直角坐标系xOy中,直线y=-12x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A. (1)求线段AB的长; (2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=5,求这条抛物线的表达式; (3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围. 12.(2020•苏州)如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3). (1)求b的值; (2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值. 13.(2020•台州)用各种盛水容器可以制作精致的家用流水景观(如图1). 科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s2=4h(H﹣h). 应用思考:现用高度为20cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔. (1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少? (2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式; (3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求垫高的高度及小孔离水面的竖直距离. 14.(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2. (1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由. (2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:2取1.4) 15.(2020•宁波)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0). (1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围. (2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式. 16.(2020•泸州)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点. (1)求该抛物线的解析式; (2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE. ①求直线BD的解析式; ②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标. 17.(2020•天津)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点. (Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标; (Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=22. ①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标; ②取EF的中点N,当m为何值时,MN的最小值是22? 18.(2020•泰安)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1). (1)求二次函数的表达式; (2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式; (3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF. ①当m=12时,求点P的坐标; ②求m的最大值. 19.(2020•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(-2,0),直线BC的解析式为y=-23x+2. (1)求抛物线的解析式; (2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标; (3)将抛物线y=ax2+bx+2(a≠0)向左平移2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由. 20.(2020•自贡)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C. (1)求抛物线的解析式; (2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时: ①求PD+PC的最小值; ②如图2,Q点为y轴上一动点,请直接写出DQ+14OQ的最小值. 21.(2020•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB. (1)如图1,当AC∥x轴时, ①已知点A的坐标是(﹣2,1),求抛物线的解析式; ②若四边形AOBD是平行四边形,求证:b2=4c. (2)如图2,若b=﹣2,BCAC=35,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由. 22.(2020•重庆)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1). (1)求该抛物线的函数表达式; (2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值; (3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由. 23.(2020•黔西南州)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C. (1)求抛物线的解析式和顶点坐标; (2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标; (3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标. 24.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于12AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题. 探究: (1)线段PA与PM的数量关系为   ,其理由为:   . (2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格: M的坐标 … (﹣2,0) (0,0) (2,0) (4,0) … P的坐标 …     (0,﹣1) (2,﹣2)     … 猜想: (3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是   . 验证: (4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式. 应用: (5)如图3,点B(﹣1,3),C(1,3),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围. 25.(2020•成都)在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2). (1)求抛物线的函数表达式; (2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1S2的最大值; (3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由. 26.(2020•乐山)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=43,如图所示. (1)求抛物线的解析式; (2)设P是抛物线的对称轴上的一个动点. ①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值; ②连结PB,求35PC+PB的最小值. 27.(2020•铜仁市)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点. (1)求抛物线的解析式; (2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值; (3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标. 28.(2020•嘉兴)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B. (1)求该抛物线的函数表达式. (2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m. ①求OD的长. ②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计). 29.(2020•黔东南州)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4). (1)求抛物线的解析式. (2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标. (3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由. 30.(2020•南充)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4). (1)求二次函数的解析式. (2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由. (3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=53,求点K的坐标. 31.(2020•遂宁)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点. (1)求抛物线的解析式. (2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标. (3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由. 32.(2020•泰州)如图,二次函数y1=a(x﹣m)2+n,y2=6ax2+n(a<0,m>0,n>0)的图象分别为C1、C2,C1交y轴于点P,点A在C1上,且位于y轴右侧,直线PA与C2在y轴左侧的交点为B. (1)若P点的坐标为(0,2),C1的顶点坐标为(2,4),求a的值; (2)设直线PA与y轴所夹的角为α. ①当α=45°,且A为C1的顶点时,求am的值; ②若α=90°,试说明:当a、m、n各自取不同的值时,PAPB的值不变; (3)若PA=2PB,试判断点A是否为C1的顶点?请说明理由. 33.(2020•连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=12x2-32x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P. (1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式; (2)当BP﹣CP的值最大时,求点P的坐标; (3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标. 34.(2020•达州)如图,在平面直角坐标系xOy中,已知直线y=12x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0). (1)求抛物线的解析式; (2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由; (3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+12ON的最小值. 35.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,-12),点F(2,1)为其对称轴上的一个定点. (1)求这条抛物线的函数解析式; (2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d; (3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标. 36.(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E. (1)求⊙C的标准方程; (2)试判断直线AE与⊙C的位置关系,并说明理由. 37.(2020•甘孜州)如图,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0). (1)求抛物线的解析式; (2)若P为线段AB上一点,∠APO=∠ACB,求AP的长; (3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由. 38.(2020•聊城)如图,二次函数y═ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点. (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式; (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标; (3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由. 39.(2020•常德)如图,已知抛物线y=ax2过点A(﹣3,94). (1)求抛物线的解析式; (2)已知直线l过点A,M(32,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB; (3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标. 40.(2020•无锡)在平面直角坐标系中,O为坐标原点,直线OA交二次函数y=14x2的图象于点A,∠AOB=90°,点B在该二次函数的图象上,设过点(0,m)(其中m>0)且平行于x轴的直线交直线OA于点M,交直线OB于点N,以线段OM、ON为邻边作矩形OMPN. (1)若点A的横坐标为8. ①用含m的代数式表示M的坐标; ②点P能否落在该二次函数的图象上?若能,求出m的值;若不能,请说明理由. (2)当m=2时,若点P恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线OA的函数表达式. 41.(2020•金华)如图,在平面直角坐标系中,已知二次函数y=-12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上. (1)当m=5时,求n的值. (2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围. (3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围. 42.(2020•遵义)如图,抛物线y=ax2+94x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P. (1)求该抛物线的解析式; (2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由; (3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径. 43.(2020•新疆)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C. (1)求抛物线的解析式; (2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m. ①当△A′MN在△OAB内部时,求m的取值范围; ②是否存在点P,使S△A′MN=56S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由. 44.(2020•遂宁)阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题: 定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数. 请思考小明的方法解决下面问题: (1)写出函数y=x2﹣4x+3的旋转函数. (2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值. (3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”. 第21 页/ 共21页 原创原创精品资源学科网独家享有版权,侵权必究!

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开