分享
专题09 二次函数-2022年中考数学真题分项汇编(全国通用)(原卷版).docx
下载文档

ID:3391392

大小:1.77MB

页数:22页

格式:DOCX

时间:2024-04-15

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
专题09 二次函数-2022年中考数学真题分项汇编全国通用原卷版 专题 09 二次 函数 2022 年中 数学 真题分项 汇编 全国 通用 原卷版
专题09 二次函数 一.选择题 1.(2022·陕西)已知二次函数的自变量对应的函数值分别为,,.当,,时,,,三者之间的大小关系是(     ) A. B. C. D. 2.(2022·山东潍坊)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为(       ) A. B. C. D.4 3.(2022·湖南郴州)关于二次函数,下列说法正确的是(       ) A.函数图象的开口向下 B.函数图象的顶点坐标是 C.该函数有最大值,是大值是5 D.当时,y随x的增大而增大 4.(2022·山东青岛)已知二次函数的图象开口向下,对称轴为直线,且经过点,则下列结论正确的是(       ) A. B. C. D. 5.(2022·黑龙江哈尔滨)抛物线的顶点坐标是(       ) A. B. C. D. 6.(2022·浙江湖州)把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是(       ) A.y=-3 B.y=+3 C.y= D.y= 7.(2022·湖北武汉)二次函数的图象如图所示,则一次函数的图象经过(       ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限 8.(2022·广西玉林)小嘉说:将二次函数的图象平移或翻折后经过点有4种方法: ①向右平移2个单位长度        ②向右平移1个单位长度,再向下平移1个单位长度 ③向下平移4个单位长度        ④沿x轴翻折,再向上平移4个单位长度 你认为小嘉说的方法中正确的个数有(     ) A.1个 B.2个 C.3个 D.4个 9.(2022·湖南岳阳)已知二次函数(为常数,),点是该函数图象上一点,当时,,则的取值范围是(       ) A.或 B. C.或 D. 10.(2022·四川宜宾)已知抛物线的图象与x轴交于点、,若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是(       ) A. B. C. D. 11.(2022·山东威海)如图,二次函数y=ax2+bx(a≠0)的图像过点(2,0),下列结论错误的是(     ) A.b>0 B.a+b>0 C.x=2是关于x的方程ax2+bx=0(a≠0)的一个根 D.点(x1,y1),(x2,y2)在二次函数的图像上,当x1>x2>2时,y2<y1<0 12.(2022·广西)已知反比例函数的图象如图所示,则一次函数和二次函数在同一平面直角坐标系中的图象可能是(       ) A.B.C.D. 13.(2022·山东潍坊)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是(       ) A. B. C. D. 14.(2022·辽宁)如图,在中,,动点P从点A出发,以每秒1个单位长度的速度沿线段匀速运动,当点P运动到点B时,停止运动,过点P作交于点Q,将沿直线折叠得到,设动点P的运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是(       ) A. B. C. D. 15.(2022·贵州铜仁)如图,若抛物线与x轴交于A、B两点,与y轴交于点C,若.则的值为(       ) 16.(2022·黑龙江牡丹江)若二次函数的图象经过点P(-2,4),则该图象必经过点(     ) A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2) 17.(2022·内蒙古通辽)在平面直角坐标系中,将二次函数的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为(     ) A. B. C. D. 18.(2022·四川遂宁)如图,D、E、F分别是三边上的点,其中,BC边上的高为6,且DE//BC,则面积的最大值为(       ) A.6 B.8 C.10 D.12 19.(2022·四川自贡)已知A(−3,−2) ,B(1,−2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论: ①c≥−2 ;②当x>0时,一定有y随x的增大而增大; ③若点D横坐标的最小值为−5,点C横坐标的最大值为3; ④当四边形ABCD为平行四边形时,a=.其中正确的是(       ) A.①③ B.②③ C.①④ D.①③④ 20.(2022·江苏泰州)已知点在下列某一函数图像上,且那么这个函数是(     ) A. B. C. D. 21.(2022·广西贺州)已知二次函数y=2x2−4x−1在0≤x≤a时,y取得的最大值为15,则a的值为(       ) A.1 B.2 C.3 D.4 22.(2022·内蒙古包头)已知实数a,b满足,则代数式的最小值等于(       ) A.5 B.4 C.3 D.2 23.(2022·黑龙江齐齐哈尔)如图,二次函数的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为,函数最大值为4,结合图象给出下列结论:①;②;③;④若关于x的一元二次方程 有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有(     ) A.2个 B.3个 C.4个 D.5个 24.(2022·湖北鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1);有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有(  )    A.2个 B.3个 C.4个 D.5个 25.(2022·四川雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为(  ) ①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6. A.②③④ B.①②④ C.①③ D.①②③④ 二.填空题 26.(2022·辽宁营口)如图1,在四边形中,,动点P,Q同时从点A出发,点P以的速度沿向点B运动(运动到B点即停止),点Q以的速度沿折线向终点C运动,设点Q的运动时间为,的面积为,若y与x之间的函数关系的图像如图2所示,当时,则____________. 27.(2022·江苏无锡)把二次函数y=x2+4x+m的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:________. 28.(2022·福建)已知抛物线与x轴交于A,B两点,抛物线与x轴交于C,D两点,其中n>0,若AD=2BC,则n的值为______. 29.(2022·湖北荆州)规定:两个函数,的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数与的图象关于y轴对称,则这两个函数互为“Y函数”.若函数(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为______. 30.(2022·贵州黔东南)在平面直角坐标系中,将抛物线先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是_______. 31.(2022·黑龙江大庆)已知函数的图象与坐标轴恰有两个公共点,则实数m的值为____________. 32.(2022·山东聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本). 33.(2022·广西贵港)已知二次函数,图象的一部分如图所示,该函数图象经过点,对称轴为直线.对于下列结论:①;②;③;④(其中);⑤若和均在该函数图象上,且,则.其中正确结论的个数共有_______个. 34.(2022·辽宁)如图,抛物线与x轴交于点和点,以下结论:①;②;③;④当时,y随x的增大而减小.其中正确的结论有___________.(填写代表正确结论的序号) 35.(2022·四川广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米. 37.(2022·黑龙江牡丹江)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________. 38.(2022·内蒙古赤峰)如图,抛物线交轴于、两点,交轴于点,点是抛物线上的点,则点关于直线的对称点的坐标为_________. 39.(2022·吉林长春)已知二次函数,当时,函数值y的最小值为1,则a的值为_______. 三.解答题 40.(2022·山东潍坊)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017-2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如下图. 小亮认为,可以从y=kx+b(k>0) ,y=(m>0) ,y=−0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选.你认同吗?请说明理由;(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式; (3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少? 41.(2022·广西贺州)如图,抛物线过点,与y轴交于点C. (1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当是以BC为底边的等腰三角形时,求点P的坐标;(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得?若存在,求出点M的横坐标;若不存在,请说明理由. 42.(2022·广东)如图,抛物线(b,c是常数)的顶点为C,与x轴交于A,B两点,,,点P为线段上的动点,过P作交于点Q.(1)求该抛物线的解析式;(2)求面积的最大值,并求此时P点坐标. 43.(2022·湖南永州)已知关于的函数. (1)若,函数的图象经过点和点,求该函数的表达式和最小值; (2)若,,时,函数的图象与轴有交点,求的取值范围. (3)阅读下面材料:设,函数图象与轴有两个不同的交点,,若,两点均在原点左侧,探究系数,,应满足的条件,根据函数图像,思考以下三个方面: ①因为函数的图象与轴有两个不同的交点,所以; ②因为,两点在原点左侧,所以对应图象上的点在轴上方,即; ③上述两个条件还不能确保,两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需. 综上所述,系数,,应满足的条件可归纳为: 请根据上面阅读材料,类比解决下面问题:若函数的图象在直线的右侧与轴有且只有一个交点,求的取值范围. 44.(2022·北京)在平面直角坐标系中,点在抛物线上,设抛物线的对称轴为(1)当时,求抛物线与y轴交点的坐标及的值; (2)点在抛物线上,若求的取值范围及的取值范围. 45.(2022·贵州遵义)新定义:我们把抛物线(其中)与抛物线称为“关联抛物线”.例如:抛物线的“关联抛物线”为:.已知抛物线的“关联抛物线”为.(1)写出的解析式(用含的式子表示)及顶点坐标;(2)若,过轴上一点,作轴的垂线分别交抛物线,于点,.①当时,求点的坐标;②当时,的最大值与最小值的差为,求的值. 46.(2022·湖北十堰)已知抛物线与轴交于点和点两点,与轴交于点. (1)求抛物线的解析式;(2)点是抛物线上一动点(不与点,,重合),作轴,垂足为,连接.①如图1,若点在第三象限,且,求点的坐标;②直线交直线于点,当点关于直线的对称点落在轴上时,求四边形的周长. 47.(2022·河南)红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离. 48.(2022·浙江台州)如图1,灌溉车沿着平行于绿化带底部边线的方向行驶,为绿化带浇水.喷水口离地竖直高度为(单位:).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形,其水平宽度,竖直高度为的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点离喷水口的水平距离为,高出喷水口,灌溉车到的距离为(单位:).(1)若,;①求上边缘抛物线的函数解析式,并求喷出水的最大射程;②求下边缘抛物线与轴的正半轴交点的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求的取值范围;(2)若.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出的最小值. 49.(2022·河北)如图,点在抛物线C:上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为,.平移该胶片,使所在抛物线对应的函数恰为.求点移动的最短路程. 50.(2022·四川雅安)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).(1)求此二次函数的表达式及图象顶点D的坐标;(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值. 51.(2022·江苏泰州)如图,二次函数的图像与轴相交于点,与反比例函数的图像相交于点B(3,1).(1)求这两个函数的表达式;(2)当随的增大而增大且时,直接写出的取值范围;(3)平行于轴的直线l与函数的图像相交于点C、D(点C在点D的左边),与函数的图像相交于点E.若△ACE与△BDE的面积相等,求点E的坐标. 53.(2022·浙江丽水)如图,已知点在二次函数的图像上,且.(1)若二次函数的图像经过点.①求这个二次函数的表达式;②若,求顶点到的距离;(2)当时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围. 54.(2022·山东临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止本项目.主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:下图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,.某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,.在空中飞行过程中,运动员到x轴的距离与水平方向移动的距离具备二次函数关系,其解析式为. (1)求b、c的值;(2)进一步研究发现运动员在飞行过程中,其水平方向移动的距离与飞行时间具备一次函数关系,当运动员在起跳点腾空时,,;空中飞行5s后着陆.①求x关于t的函数解析式;②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少? 55.(2022·山东威海)探索发现 (1)在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D,连接AD. ①如图1,直线DC交直线x=1于点E,连接OE.求证:AD∥OE; ②如图2,点P(2,﹣5)为抛物线y=ax2+bx+3(a≠0)上一点,过点P作PG⊥x轴,垂足为点G.直线DP交直线x=1于点H,连接HG.求证:AD∥HG; (2)通过上述两种特殊情况的证明,你是否有所发现?请仿照(1)写出你的猜想,并在图3上画出草图.在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),顶点为点D.点M为该抛物线上一动点(不与点A,B,D重合),_______. 56.(2022·内蒙古赤峰)【生活情境】 为美化校园环境,某学校根据地形情况,要对景观带中一个长,宽的长方形水池进行加长改造(如图①,改造后的水池仍为长方形,以下简称水池1),同时,再建造一个周长为的矩形水池(如图②,以下简称水池2). 【建立模型】 如果设水池的边加长长度为,加长后水池1的总面积为,则关于的函数解析式为:;设水池2的边的长为,面积为,则关于的函数解析式为:,上述两个函数在同一平面直角坐标系中的图像如图③. 【问题解决】(1)若水池2的面积随长度的增加而减小,则长度的取值范围是_________(可省略单位),水池2面积的最大值是_________; (2)在图③字母标注的点中,表示两个水池面积相等的点是_________,此时的值是_________; (3)当水池1的面积大于水池2的面积时,的取值范围是_________; (4)在范围内,求两个水池面积差的最大值和此时的值; (5)假设水池的边的长度为,其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积关于的函数解析式为:.若水池3与水池2的面积相等时,有唯一值,求的值. 57.(2022·黑龙江)如图,抛物线经过点,点,与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使的面积是面积的4倍,若存在,请直接写出点P的坐标:若不存在,请说明理由. 58.(2022·贵州贵阳)已知二次函数y=ax2+4ax+b.(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(−1,e),(−3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当−2≤m≤1时,n的取值范围是−1≤n≤1,求二次函数的表达式. 59.(2022·山东青岛)已知二次函数y=x2+mx+m2−3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2−3的图象与x轴交点的个数,并说明理由. 60.(2022·四川内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标. 61.(2022·湖北武汉)抛物线交轴于A,两点(A在的左边),是第一象限抛物线上一点,直线交轴于点.(1)直接写出A,两点的坐标;(2)如图(1),当时,在抛物线上存在点(异于点),使,两点到的距离相等,求出所有满足条件的点的横坐标;(3)如图(2),直线交抛物线于另一点,连接交轴于点,点的横坐标为.求的值(用含的式子表示). 62.(2022·湖南常德)如图,已经抛物线经过点,,且它的对称轴为.(1)求此抛物线的解析式;(2)若点是抛物线对称轴上的一点,且点在第一象限,当的面积为15时,求的坐标;(3)在(2)的条件下,是抛物线上的动点,当的值最大时,求的坐标以及的最大值 63.(2022·湖南娄底)如图,抛物线与轴相交于点、点,与轴相交于点.(1)请直接写出点,,的坐标;(2)点在抛物线上,当取何值时,的面积最大?并求出面积的最大值.(3)点是抛物线上的动点,作//交轴于点,是否存在点,使得以、、、为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点的坐标;若不存在,请说明理由. 64.(2022·广东深圳)二次函数先向上平移6个单位,再向右平移3个单位,用光滑的曲线画在平面直角坐标系上. (1)的值为                               ;(2)在坐标系中画出平移后的图象并求出与的交点坐标; (3)点在新的函数图象上,且两点均在对称轴的同一侧,若则                 (填“”或“”或“”) 22 原创精品资源学科网独家享有版权,侵权必究! 学科网(北京)股份有限公司

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开