温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
上海市
奉贤
中学
2023
学年
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数的大致图象是( )
A. B.
C. D.
2.若为虚数单位,则复数的共轭复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.如图,平面与平面相交于,,,点,点,则下列叙述错误的是( )
A.直线与异面
B.过只有唯一平面与平行
C.过点只能作唯一平面与垂直
D.过一定能作一平面与垂直
4.要得到函数的图象,只需将函数的图象上所有点的( )
A.横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度
B.横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度
5.用数学归纳法证明,则当时,左端应在的基础上加上( )
A. B.
C. D.
6.设,是方程的两个不等实数根,记().下列两个命题( )
①数列的任意一项都是正整数;
②数列存在某一项是5的倍数.
A.①正确,②错误 B.①错误,②正确
C.①②都正确 D.①②都错误
7.函数的图象大致为
A. B. C. D.
8.若函数的图象经过点,则函数图象的一条对称轴的方程可以为( )
A. B. C. D.
9.已知(),i为虚数单位,则( )
A. B.3 C.1 D.5
10.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则( )
A.命题①和命题②都成立 B.命题①和命题②都不成立
C.命题①成立,命题②不成立 D.命题①不成立,命题②成立
11.已知复数是正实数,则实数的值为( )
A. B. C. D.
12.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数为奇函数,则______.
14.在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为______.
15.如图,在平面四边形中,,则_________
16.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.
18.(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,.
(Ⅰ)若,求的值;
(Ⅱ)证明:当取最小值时,与共线.
19.(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
20.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.
(1)求曲线的方程;
(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.
21.(12分)已知函数,其中.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)设,求证:;
(Ⅲ)若对于恒成立,求的最大值.
22.(10分)本小题满分14分)
已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段的长度
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
用排除B,C;用排除;可得正确答案.
【题目详解】
解:当时,,,
所以,故可排除B,C;
当时,,故可排除D.
故选:A.
【答案点睛】
本题考查了函数图象,属基础题.
2、B
【答案解析】
由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解
【题目详解】
由题意得,
因为,,
所以在复平面内对应的点位于第二象限.
故选:B
【答案点睛】
本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.
3、D
【答案解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.
【题目详解】
A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.
B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.
C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.
D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.
故选:D
【答案点睛】
本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.
4、C
【答案解析】
根据三角函数图像的变换与参数之间的关系,即可容易求得.
【题目详解】
为得到,
将横坐标伸长到原来的2倍(纵坐标不变),
故可得;
再将 向左平移个单位长度,
故可得.
故选:C.
【答案点睛】
本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.
5、C
【答案解析】
首先分析题目求用数学归纳法证明1+1+3+…+n1=时,当n=k+1时左端应在n=k的基础上加上的式子,可以分别使得n=k,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案.
【题目详解】
当n=k时,等式左端=1+1+…+k1,
当n=k+1时,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.
故选:C.
【答案点睛】
本题主要考查数学归纳法,属于中档题./
6、A
【答案解析】
利用韦达定理可得,,结合可推出,再计算出,,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误.
【题目详解】
因为,是方程的两个不等实数根,
所以,,
因为,
所以
,
即当时,数列中的任一项都等于其前两项之和,
又,,
所以,,,
以此类推,即可知数列的任意一项都是正整数,故①正确;
若数列存在某一项是5的倍数,则此项个位数字应当为0或5,
由,,依次计算可知,
数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,
故数列中不存在个位数字为0或5的项,故②错误;
故选:A.
【答案点睛】
本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.
7、D
【答案解析】
由题可得函数的定义域为,
因为,所以函数为奇函数,排除选项B;
又,,所以排除选项A、C,故选D.
8、B
【答案解析】
由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.
【题目详解】
由题可知.
所以
令,
得
令,得
故选:B
【答案点睛】
本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.
9、C
【答案解析】
利用复数代数形式的乘法运算化简得答案.
【题目详解】
由,得,解得.
故选:C.
【答案点睛】
本题考查复数代数形式的乘法运算,是基础题.
10、A
【答案解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.
【题目详解】
①如图所示,过作平面,垂足为,连接,作,连接.
由图可知,,所以,所以①正确.
②由于,所以与所成角,所以,所以②正确.
综上所述,①②都正确.
故选:A
【答案点睛】
本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.
11、C
【答案解析】
将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.
【题目详解】
因为为正实数,
所以且,解得.
故选:C
【答案点睛】
本题考查复数的基本定义,属基础题.
12、A
【答案解析】
详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,
且俯视图应为对称图形
故俯视图为
故选A.
点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用奇函数的定义得出,结合对数的运算性质可求得实数的值.
【题目详解】
由于函数为奇函数,则,即,
,整理得,解得.
当时,真数,不合乎题意;
当时,,解不等式,解得或,此时函数的定义域为,定义域关于原点对称,合乎题意.
综上所述,.
故答案为:.
【答案点睛】
本题考查利用函数的奇偶性求参数,考查了函数奇偶性的定义和对数运算性质的应用,考查计算能力,属于中等题.
14、2023
【答案解析】
根据条件先求出数列的通项,利用累加法进行求解即可.
【题目详解】
,,,
下面求数列的通项,
由题意知,,,
,,
,
数列是递增数列,且,
的最小值为.
故答案为:.
【答案点睛】
本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键.综合性较强,属于难题.
15、
【答案解析】
由题意得,然后根据数量积的运算律求解即可.
【题目详解】
由题意得
,
∴.
【答案点睛】
突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用表示,然后再根据数量积的运算律求解,这样解题方便快捷.
16、
【答案解析】
根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.
【题目详解】
棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.
将平面绕旋转至与平面共面的位置,如下图所示:
则,所以;
将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:
则,所以;
因为,且由诱导公式可得,
所以最短距离为,
故答案为:.
【答案点睛】
本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导