各种距离在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。本文的目的就是对常用的相似性度量作一个总结。本文目录:1.欧氏距离2.曼哈顿距离3.切比雪夫距离4.闵可夫斯基距离5.标准化欧氏距离6.马氏距离7.夹角余弦8.汉明距离9.杰卡德距离&杰卡德相似系数10.相关系数&相关距离11.信息熵1.欧氏距离(EuclideanDistance)欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的欧氏距离:也可以用表示成向量运算的形式:(4)Matlab计算欧氏距离Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离X=[00;10;02]D=pdist(X,'euclidean')结果:D=1.00002.00002.23612.曼哈顿距离(ManhattanDistance)从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(CityBlockdistance)。(1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离(2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离(3)Matlab计算曼哈顿距离例子:计算向量(0,0)、(1,0)、(0,2)两两间的曼哈顿距离X=[00;10;02]D=pdist(X,'cityblock')结果:D=1233.切比雪夫距离(ChebyshevDistance)国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max(|x2-x1|,|y2-y1|)步。有一种类似的一种距离度量方法叫切比雪夫距离。(1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离(2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的切比雪夫距离这个公式的另一种等价形式是看不出两个公式是等价的?提示一下:试试用放缩法和夹逼法则来证明。(3)Matlab计算切比雪夫距离例子:计算向量(0,0)、(1,0)、(0,2)...