二中高二数学选修4-4导学案编号:15-12-11-603新课标人教A版选修4-4第一讲坐标系导学案§4.1.1—第一课平面直角坐标系本课提要:本节课的重点是体会坐标法的作用,掌握坐标法的解题步骤,会运用坐标法解决实际问题与几何问题.一、温故而知新1.到两个定点A(-1,0)与B(0,1)的距离相等的点的轨迹是什么?2.在⊿ABC中,已知A(5,0),B(-5,0),且,求顶点C的轨迹方程.二、重点、难点都在这里【问题1】:某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚4s.已知各观测点到中心的距离都是1020m.试确定巨响发生的位置.(假定声音传播的速度为340m/s,各观测点均在同一平面上.)(详解见课本)【问题2】:已知⊿ABC的三边满足,BE,CF分别为边AC,AB上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系.三、懂了,不等于会了4.两个定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹.课前小测典型问题技能训练5.求直线与曲线的交点坐标.6.已知A(-2,0),B(2,0),则以AB为斜边的直角三角形的顶点C的轨迹方程是.8.已知A(-3,0),B(3,0),直线AM、BM相交于点M,且它们的斜率之积为,则点M的轨迹方程是.二中高二数学选修4-4导学案编号:平面直角坐标系中的伸缩变换【基础知识导学】1、坐标系包括平面直角坐标系、极坐标系、柱坐标系、球坐标系。2、“坐标法”解析几何学习的始终,同学们在不断地体会“数形结合”的思想方法并自始至终强化这一思想方法。3、坐标伸缩变换与前面学的坐标平移变换都是将平面图形进行伸缩平移的变换,本质是一样的。知识要点归纳】思考1:怎样由正弦曲线y=sinx得到曲线y=sin2x?坐标压缩变换:设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原来1/2,得到点P’(x’,y’).坐标对应关系为:通常把上式叫做平面直角坐标系中的一个压缩变换。思考2:怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。设P(x,y)是平面直角坐标系中任意一点,保持横坐标x不变,将纵坐标y伸长为原来3倍,得到点P’(x’,y’).坐标对应关系为:通常把上式叫做平面直角坐标系中的一个伸长变换。思考3:怎样由正弦曲线y=sinx得到曲线y=3sin2x?写出其坐标变换。定义:设P(x,y)是平面直角坐标系中任意一点,在变换的作用下,点P(x,y)对应P’(x’,y’).称为平面直角坐标系中的伸缩变换。【典型例题】...