温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
河南省
郑州市
106
中高
下学
期一模
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若a>b>0,0<c<1,则
A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb
2.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为( )
A. B. C. D.
3.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )
A. B. C. D.
4.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为( )
A.6 B.8 C.10 D.12
5.如果,那么下列不等式成立的是( )
A. B.
C. D.
6.若的展开式中含有常数项,且的最小值为,则( )
A. B. C. D.
7.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( )
A.方差 B.中位数 C.众数 D.平均数
8.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )
A.月收入的极差为60 B.7月份的利润最大
C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元
9.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )
A. B. C. D.
10.已知纯虚数满足,其中为虚数单位,则实数等于( )
A. B.1 C. D.2
11.已知m为实数,直线:,:,则“”是“”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
12.已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,则_____。
14.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,则.其中正确命题的序号为______.
15.已知函数,且,,使得,则实数m的取值范围是______.
16.在中,已知是的中点,且,点满足,则的取值范围是_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知.
(1)求的单调区间;
(2)当时,求证:对于,恒成立;
(3)若存在,使得当时,恒有成立,试求的取值范围.
18.(12分)设数列是公差不为零的等差数列,其前项和为,,若,,成等比数列.
(1)求及;
(2)设,设数列的前项和,证明:.
19.(12分)已知函数.
(1)求函数的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若满足,,,求.
20.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.
21.(12分)如图,已知在三棱锥中,平面,分别为的中点,且.
(1)求证:;
(2)设平面与交于点,求证:为的中点.
22.(10分)已知函数.
(1)若在上是减函数,求实数的最大值;
(2)若,求证:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
试题分析:对于选项A,,,,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.
【考点】指数函数与对数函数的性质
【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.
2、B
【答案解析】
设左焦点的坐标, 由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.
【题目详解】
由双曲线的方程可设左焦点,由题意可得,
由,可得,
所以双曲线的方程为:
所以,
所以
三角形ABF2的周长为
设内切圆的半径为r,所以三角形的面积,
所以,
解得,
故选:B
【答案点睛】
本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.
3、D
【答案解析】
设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.
【题目详解】
设双曲线的左焦点为,连接,,,
设,则,,,
,根据对称性知四边形为矩形,
中:,即,解得;
中:,即,故,故.
故选:.
【答案点睛】
本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.
4、D
【答案解析】
推导出,且,,,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值.
【题目详解】
解:如图(4),为该四棱锥的正视图,由图(3)可知,,且,由为等腰直角三角形可知,
,设中点为,则平面,∴,
∴,解得.
故选:D
【答案点睛】
本题考查三视图和锥体的体积计算公式的应用,属于中档题.
5、D
【答案解析】
利用函数的单调性、不等式的基本性质即可得出.
【题目详解】
∵,∴,,,.
故选:D.
【答案点睛】
本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.
6、C
【答案解析】
展开式的通项为
,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.
所以.故选C
点睛:求二项展开式有关问题的常见类型及解题策略
(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.
(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.
7、A
【答案解析】
通过方差公式分析可知方差没有改变,中位数、众数和平均数都发生了改变.
【题目详解】
由题可知,中位数和众数、平均数都有变化.
本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,
根据方差公式可知方差不变.
故选:A
【答案点睛】
本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.
8、D
【答案解析】
直接根据折线图依次判断每个选项得到答案.
【题目详解】
由图可知月收入的极差为,故选项A正确;
1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;
易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.
故选:.
【答案点睛】
本题考查了折线图,意在考查学生的理解能力和应用能力.
9、D
【答案解析】
先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.
【题目详解】
设四个支点所在球的小圆的圆心为,球心为,
由题意,球的体积为,即可得球的半径为1,
又由边长为的正方形硬纸,可得圆的半径为,
利用球的性质可得,
又由到底面的距离即为侧面三角形的高,其中高为,
所以球心到底面的距离为.
故选:D.
【答案点睛】
本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.
10、B
【答案解析】
先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.
【题目详解】
因为,所以,
又因为是纯虚数,所以,所以.
故选:B.
【答案点睛】
本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.
11、A
【答案解析】
根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,
当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.
当m≠0时,则l1∥l2⇒,
由得m2﹣3m+2=0得m=1或m=2,
由得m≠2,则m=1,
即“m=1”是“l1∥l2”的充要条件,
故答案为:A
【答案点睛】
(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.
12、A
【答案解析】
首先根据为上的减函数,列出不等式组,求得,所以当最小时,,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.
【题目详解】
由于为上的减函数,则有,可得,
所以当最小时,,
函数恰有两个零点等价于方程有两个实根,
等价于函数与的图像有两个交点.
画出函数的简图如下,而函数恒过定点,
数形结合可得的取值范围为.
故选:A.
【答案点睛】
该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由已知求,再利用和角正切公式,求得,
【题目详解】
因为所以cos
因此.
【答案点睛】
本题考查了同角三角函数基本关系式与和角的正切公式。
14、③④
【答案解析】
由直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义判断.
【题目详解】
①若且,的位置关系是平行、相交或异面,①错;
②若且,则或者,②错;
③若,设过的平面与交于直线,则,又,则,∴,③正确;
④若,且,由线面垂直的定义知,④正确.
故答案为:③④.
【答案点睛】
本题考查直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义,考查空间线面间的位置关系,掌握空间线线、线面、面面位置关系是解题基础.
15、
【答案解析】
根据条件转化为函数在上的值域是函数在上的值域的子集;分别求值域即可得到结论.
【题目详解】
解:依题意,,
即函数在上的值域是函数在上的值域的子集.
因为在上的值域为()或(),
在上的值域为,
故或,
解得
故答案为:.
【答案点睛】
本题考查了分段函数的值域求参数的取值范围,属于中档题.
16、
【