血管
分泌
因子
调控
再生
纤维化
机制
研究进展
(Biomedical Transformation),2023年9月,第4卷,第3期血管分泌因子调控肺再生与纤维化的机制研究进展陈雨田1,丁楅森2*收稿日期:2023-08-18;修回日期:2023-09-11基金项目:73批博后面上资助项目(2023M733232)通信作者:丁楅森(1980-),男,江苏盱眙人,研究员,主要从事血管微环境调控器官再生与纤维化的研究。E-mail:【摘要】哺乳动物肺受到损伤后具有一定的修复再生能力,但是这一能力会随着衰老以及损伤的持续进行被抑制,导致发生纤维化,目前肺纤维化仍缺乏有效的治疗方法。血管内皮细胞通过分泌不同的血管分泌因子(Angiocrine Factors,AF)能够对受损肺组织进行主动调节,平衡肺再生与纤维化。因此深入了解血管分泌因子的主动调节作用,能够为肺部疾病的治疗提供新的思路。本文主要综述了血管微环境对肺再生与纤维化调节机制的最新研究进展,同时本文也总结了研究肺部疾病的多种体内、体外模型,探讨了靶向编辑血管微环境促进肺再生的可能性。【关键词】血管内皮细胞;血管分泌因子;血管微环境;肺再生;肺纤维化中图分类号:R563,R364.3+3文献标识码:A文章编号:2096-8965(2023)03-0025-07Research progress on the mechanism of angiocrinefactors regulating lung regeneration and fibrosisChen Yutian1,Ding Bisen2*(1.The First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,Henan,China;2.West China Second University Hospital,Sichuan University,Chengdu 610041,Sichuan,China)【Abstract】Mammalian lungs have a certain ability to repair and regenerate following injury,which abilitycould decline with age and persistent damage,leading to fibrosis.Pulmonary fibrosis represents a major cause ofdeath worldwide with limited therapeutic options.Endothelial cells balance the regeneration and fibrosis ofdamaged lung by orchestrating the diverse angiocrine factors.More knowledge about the active regulation ofangiocrine factors has provide future treatment options for lung diseases.In this review,we mainly summarize thelatest research progress on the regulatory mechanisms of vascular niche in lung regeneration and fibrosis.Inaddition,we also summarize various in/ex vivo models for studying lung disease,and discuss the potential oftargeted editing of vascular niche to promote lung regeneration.【Keywords】Vascular endothelial cell;Angiocrine factors;Vascular niche;Lung regeneration;Lung fibrosis(1.郑州大学第一附属医院,河南 郑州 450052;2.四川大学华西第二医院,四川 成都 610041)DOI:10.12287/j.issn.2096-8965.20230305肺是哺乳动物与外界进行气体交换的主要器官,具有调节呼吸、免疫以及造血等多种重要功能,在解剖结构上,肺直接与外界环境接触,因此很容易受到损伤。随着人口老龄化的进程,肺部疾25(Biomedical Transformation),2023年9月,第4卷,第3期病如:慢性阻塞性肺病、特发性肺纤维化、哮喘成为威胁人类健康的重要杀手1。这些肺部疾病的共同病理结果是纤维化,纤维化是受损肺组织过度修复的结果,其特征是细胞外基质过度沉积,破坏肺部正常生理结构,使其无法正常行驶气体交换的功能,导致肺衰竭甚至死亡2,3。哺乳动物肺组织受到损伤后具有一定的修复再生能力,但是这种再生能力会随着年龄的增长以及损伤的持续进行,逐渐减弱,最终导致发生纤维化4。血管系统由血液和淋巴循环组成,他们协同作用维持组织的功能和稳态平衡。这些血管系统由高度特化的专门血管网络组成,包括动脉,静脉、毛细血管和淋巴管5。内皮细胞(Endothelial Cells,ECs)排列在血管腔的最内层,在感知循环环境和响应外界信号方面发挥重要作用。这些内皮细胞表现出高度的组织特异性6,尤其是在毛细血管水平,例如在大脑和视网膜中,内皮细胞紧密连接,严格限制营养物质、可溶性因子和血液循环中的细胞进入组织,相反,在肝脏和肾脏中,内皮细胞具有开窗结构,排列疏松,以满足这些器官和循环系统中高度物质交换的需求。内皮细胞起源于中胚层中的多能祖细胞,是发育过程中首先分化的血管细胞,他们在血管壁和完整血管网络的形成中起关键作用7-9。越来越多的研究表明,血管不仅仅是运输血液、氧气和营养物质的被动导管,位于血管腔内侧的血管内皮细胞能通过旁分泌和自分泌作用,产生血管分泌因子(Angiocrine Factors,AF),形成血管微环境,对周围组织和器官的生理病理过程起到主动调节作用10-13。本文主要总结了血管内皮细胞如何通过分泌不同的血管分泌因子主动调控受损肺组织的再生和纤维化14,15。1血管微环境与肺部疾病血管内皮细胞通过分泌一些AF与受损组织中的其他细胞(例如血小板,巨噬细胞等)相互作用构成组织微环境,激活组织驻留祖细胞,2型肺泡上皮细胞的增殖分化程序,调节受损肺组织的修复过程(见图1)16-18。有研究表明,肺毛细血管内皮细胞(Pulmonary Capillary Endothelial Cells,PCECs)内皮功能障碍,激活素A(Activin-A)-骨形成蛋白受体2(BMPR-2)信号失调会导致肺动脉高压19。富含亮氨酸的-2-糖蛋白-1(Leucine-Rich-2-Glycoprotein-1,LRG1)能够加剧弹性蛋白酶诱导的小鼠肺气肿病变程度,而这种病变可以通过静脉输送健康的肺内皮细胞进行挽救20。在内毒素血症小鼠模型中,肺部内皮细胞释放的Wnt信号调节因子Rspondin 3激活肺间质巨噬细胞的-连环蛋白信号,增加线粒体呼吸,生成的-酮戊二酸反过来作为表观遗传学调节因子TET2催化DNA羟甲基化的辅因子,缓解肺部炎症损伤21。受外界环境或者衰老等因素的刺激,肺组织的结构和功能被破坏,血管内皮细胞分泌AF与循环系统中的血小板和巨噬细胞相互作用形成血管微环境,调控肺上皮细胞的增殖和分化,平衡受损肺组织的再生和纤维化过程。图1血管微环境调控肺再生与纤维化26(Biomedical Transformation),2023年9月,第4卷,第3期2型肺泡上皮细胞是肺组织中具有干性的前体细胞,能够被特定信号激活,增殖转分化为1型肺上皮细胞,执行气体交换功能,因此,如何启动上皮细胞转分化程序也是肺稳态和肺组织受损后修复的研究热点之一。在铜绿假单胞菌诱导的肺损伤模型中,肺微血管内皮细胞(Lung MicrovascularEndothelial Cells,LMVECs)释放的鞘氨醇-1-磷酸(Sphingosine-1-Phosphate,S1P)通过其受体S1PR2作用于 2 型肺泡上皮细胞,诱导 Yes 相关蛋白(Yes-Associated Protein,YAP)的核易位,促进 2型肺泡上皮细胞向1型肺上皮细胞的转化,促进受损肺泡的修复再生,抑制纤维化22。非编码 RNA在多种病理生理过程中起重要调控作用,血管内皮细胞特异性敲除血管内皮生长因子受体1(VascularEpidemal Growth Factor Receptor-1,VEGFR1)能够通过促进上皮转分化,增强microRNA-200c对肺损伤的抗纤维化作用23。单次博来霉素气管滴注可以诱导小鼠急性肺损伤模型,在此模型中,肺泡毛细血管内皮细胞(Pulmonary Capillary Endothelial Cells,PCECs)高 表达趋化因子受体 7(Chemokine Receptor 7,CXCR7),能够防止上皮损伤,改善纤维化。相反,多次博来霉素气管滴注诱导小鼠慢性肺损伤模型,能够激活 PCECs和血管周围巨噬细胞,阻碍肺组织修复,促进纤维化。反复损伤抑制 PCECs中的 CXCR7,招募 VEGFR+巨噬细胞沉积在血管上,促进 PCECs中 Notch配体 Jagged1的上调,进而刺激血管周围的成纤维细胞,激活纤维化反应,抑制再生24。肺是一个高度血管化的器官,毛细血管内皮细胞与肺泡上皮细胞在解剖结构上紧密结合在一起,执行气体交换的功能,另一方面,在肺组织受到损伤时,血管内皮细胞第一时间分泌血管分泌因子响应损伤,调节周围肺泡上皮细胞的增殖和分化,完善受损肺组织的结构缺陷和正常肺功能的执行,血管内皮细胞的主动调节作用在急性、慢性损伤以及炎症性损伤等多种损伤模型中都扮演重要角色。因此对血管内皮细胞的关键节点分子进行靶向编辑,在肺再生以及纤维化的治疗方面具有巨大的潜力。2血管分泌因子调节衰老相关的肺损伤衰老是所有与年龄相关的成人慢性病死亡的主要危险因素,到2034年,预计老年人的数量将首次超过儿童,在全球范围内,预计到2050年,65岁以上的成年人数量将从6.17亿增加到20亿,占世界人口的20%25。这种人口模式的转变将给经济和医疗带来重大挑战。临床前模型已经证明,衰老是一种可以改变的疾病26。肺组织衰老伴随着肺功能改变、肺结构重塑、再生能力下降以及对急性和慢性外部刺激易感性的增加。虽然肺泡以及毛细血管数量在成年期保持不变,但是随着年龄的增长,肺泡大小以及肺泡毛细血管表面积明显增大27。代偿性重塑期间发生的肺泡深度和腺泡气道腔的改变与年龄密切相关28。即使健康人群,肺功能也会从35岁开始下降29,30。因此,研究衰老过程中肺组织各种细胞以及细胞与细胞之间分子机制的变化很重要。通过研究部分肺切除(Pneumectomy,PNX)模型发现,与适龄小鼠(2月龄)相比,老年小鼠(20月龄)肺组织血管周围沉积大量的血小板和巨噬细胞集落,且肺组织的修复能力受到极大的抑制,呈现出由再生向纤维化方向转化的现象。这说明血管细胞与血液细胞参与了肺组织修复再生的调控,血小板和巨噬细胞之间的异常“沟通”可能是衰老肺再生向纤维化转化的一个原因。内皮细胞转录组测序结果显示,老年小鼠肺泡毛细血管内皮细胞中神经肽1(Neuropinin-1,Nrp1)和低氧诱导因子2(Hypoxia inducible factor 2,Hif2)的高表达,相反的抗血栓以及抗炎症的内皮细胞蛋白C受体(Endothelial Protein C Receptor,Epcr)低表达。使用血管内皮细胞特异性敲除Nrp1(Nrp1iEC/iEC)的转基因鼠研究发现,老年 Nrp1iEC/iEC小鼠肺切后,HIF2 的表达量降低,EPCR 表达水平上调,且 Nrp1 的敲除抑制了血小板-巨噬细胞集落的形成,肺组织纤维化程度降低,促进肺泡上皮细胞的增殖,这种情况能够被EPCR的中和抗体恢复。血管 内 皮 细 胞 特 异 性 敲 除 Hif2 的 基 因 鼠(Hif2iEC/iEC)显示,内皮源性Hif2的敲除可以抑制基质细胞衍生因子 1(Stromal-Derived Factor 1,SDF1)的表达,从而降低 CXCR4+巨噬细胞的数量,抑制器官纤维化31。血小板可以产生促炎性细胞因子,如白介素,可以与巨噬细胞相互作用,构建血小板特异性缺失白细胞介素 1(Interleukin 1,IL1)的基因鼠(IL1iPlt/iPlt),探究血小板与巨噬细胞之间的相互作用关系31-36。在对肺损伤模型小鼠进行EPCR中和抗体1560治疗后,发现IL1iPlt/iPlt小鼠可抑制血小板-巨噬细胞集落的形成,并且能够降低促纤维化的组织金属蛋白酶抑制剂 1(Tissue Inhibitor ofMetalloproteinases 1,TIMP1)因子表达。使用血27(Biomedical Transformation),2023年9月,第4卷,第3期小板的过继转移模型,发现与接受移植IL1+/+血小板的老年小鼠相比,接受IL1-/-血小板移植的老年受体小鼠 TIMP1表达降低,受试器官胶原沉积减少。这些数据表明,抑制衰老个体内皮细胞中的EPCR参与调控血小板IL1的产生,而血小板IL1与衰老器官中促纤维化血小板-巨噬细胞集落的形成以及促纤维化因子TIMP1的表达有关31。不仅仅是肺组织,上述血管微环境的调控机制在纤维化的治疗方面具有巨大的潜在价值,例如在肝、肾的再生和纤维化模型中都得到了相同的验证31。衰老器官受到损伤后,血管内皮细胞发生重编程,抑制受损器官的再生能力。衰老能够促进肺、肝脏和肾脏血管内皮细胞中 NRP1/HIF2的表达,抑制抗血栓和抗炎症的EPCR信号通路,招募促纤维化的血小板-巨噬细胞集落。在这种情况下,激活的血小板通过IL1与内皮细胞协同作用产生趋化因子招募促纤维化的TIMP1高表达的巨噬细胞。在小鼠模型中,靶向编辑内皮细胞NRP1、HIF2、血小板 IL1或巨噬细胞 TIMP1,可以使原发性纤维化的血管微环境得到改善,恢复衰老器官的再生能力31。衰老导致小鼠肝源性载脂蛋白M(Apolipoprotein M,ApoM)表现出转录抑制性,这种肝脏中的抑制作用能够通过循环系统传递到其他器官,例如肺和肾脏,进一步发挥调节作用,引起这两种器官中血管内皮细胞鞘氨醇 1 磷酸酯受体 1(Sphingosine-1-Phosphate Receptor,S1PR1)-1 磷酸鞘氨醇(Sphingosine-1-Phosphate,S1P)信号的减弱,而这种信号的减弱导致抗血管渗漏的抵抗力降低,最终造成器官纤维化。引起肝源性ApoM 转录抑制的原因是肝细胞中沉默信息调节因子相关酶 1(Sirtuin 1,Sirt1)-肝细胞核因子4(Hepatocyte nuclear factor 4,Hnf4)信号通路的抑制32。多种肺部疾病的发病率与年龄增长呈明显的正相关,因此研究衰老过程中肺部微环境中分子机制的变化,尤其是具有重要调节作用的血管内皮细胞中的自分泌和旁分泌作用具有重要的意义,找到平衡器官再生与纤维化过程中的关键节点分子,能够为临床治疗策略提供更高效的作用靶点。3研究肺再生与纤维化的体内、体外模型动物模型是模拟临床疾病的重要工具。合适的动物模型是开发新的治疗策略的重要环节。人肺和鼠肺在解剖结构上存在一定的差异,小鼠肺气管直接过渡到支气管连接处的肺泡,而在人和其他大型哺乳动物体内,近端气管通过呼吸性细支气管和肺泡小管逐渐过渡到远端肺泡。因此,使用小鼠模型进行研究时要注意这一区别33。3.1 博来霉素诱导肺损伤模型单次博来霉素气管滴注经常被用来研究肺纤维化的发生,以及用来评估抗纤维化治疗效果,该模型通过早期诱导炎症反应发挥作用,在5-7天后会转化为纤维化34-36。这种模型能反映出特发性肺纤维化(Idiopathic Pulmonary Fibrosis,IPF)患者的部分病理特征37。在小鼠博来霉素气管滴注模型中,纤维化在3-4周之后可以被逆转38,39。许多抗纤维化治疗的临床前数据都来自于该模型,但是这种模型用于 IPF 的抗纤维化治疗中仍存在一些问题,例如这种模型是在急性肺损伤情况下诱导的纤维化,而不是进行性纤维化反应40。对于肺血管损伤模型,通常使用油酸、磷酸脂多糖或者内毒素41。在大动物肺损伤模型方面,0.3%Triton X-100和0.9%生理盐水通过机械通气循环冲洗可诱导小型猪单侧急性肺损伤(Acute Lung Injury,ALI),这是一种开创性的模型42。3.2 左侧全肺切除模型左侧肺切除是研究肺再生的主要模型,这种模型具有良好的重复性,对表征肺功能气体交换单元的结构和生理适应性具有重要意义。该模型的特点是,切除之后剩余的组织不发生炎症反应,因此通过这个模型可以研究剩余肺组织补偿性再生的驱动机制43,44。3.3 人类类器官模型小鼠和人肺组织在解剖结构上存在差异,因此在探究肺部疾病临床治疗方法的过程中,人肺体外模型的开发和应用很重要45。人类类器官模型是一种高效率、低成本、可大规模培养的模型,同时包含近端和远端气道上皮细胞46-49。培养类器官的细胞来源广泛,来自于肺部不同的细胞类型50。感染严重急性呼吸系统综合征冠状病毒 2 型(SevereAcute Respiratory Syndrome Coronavirus 2,SARS-CoV-2)的模型可以重现患者样本的转录组特征51。肺组织是一个复杂的多细胞类型器官,体外3D类器官模型并不能完全反应人类体内的生理过程。虽然3D肺类器官模型具有一定的局限性,但是这个模型仍然是研究人类肺部疾病的重要模型之一52-55。在3D器官培养模型中,2型肺泡上皮细胞与成纤维细胞共同接种在胶原培养基质中共同形成一种微28(Biomedical Transformation),2023年9月,第4卷,第3期环境,可以进行支气管发育不良机制研究56。另一种被用来广泛研究呼吸系统疾病以及药物递送的模型是气-液界面(Air-Liquid Interface,ALI)培养,这种培养体系使培养物一侧接触液体培养基,另一侧暴露于空气中,因此非常适合研究与液体和气体共同作用的呼吸道上皮细胞,能够更精准的模拟体内环境,非常适合进行呼吸道上皮细胞作为药物渗透屏障的研究57。在气液界面分化的原代人鼻上皮细胞培养是研究严重SARS-CoV-2宿主病毒相互作用的相关原代细胞模型,加深了我们对相关发病机制的理解58,59。气液界面培养系统可以弥补传统细胞培养系统的不足,尤其是肺上皮细胞,更接近体内真实的生理状态60。小鼠和人类呼吸系统结构和发育的差异使得人类临床肺组织样本的收集和分析变得重要。特别是单细胞转录组和空间转录组的发展也促进了生物学研究的发展,从基于疾病动物模型的假设,在人类样本中进行有限的验证,到基于人类样本的无偏分子分析的假设生成,再到使用疾病动物模型进行验证。这种转变使肺部疾病的生物学研究更加高效。从出生到8岁的10个不同时期的人类肺部蛋白质组学分析表明,肺泡发育存在不同的分子亚阶段,并预测了独立人类肺部样本的年龄61。目前,研究肺部疾病的主要临床样本来源包括活检样本、肺移植样本、尸检样本和肺泡灌洗液。4展望过去的十年间,科研人员将大量的注意力投入肺再生和纤维化的治疗领域,虽然有部分临床试验正在进行62-64,但是,现实情况是目前对于肺纤维化仍缺乏有效的治疗方法。目前美国食品药品监督管理局(Food and Drug Administration,FDA)批准两种药物尼达尼布和吡非尼酮用于肺纤维化的治疗,但是这两种药只能延缓肺纤维化的进程,并不能做到完全治愈或者逆转纤维化,存在一定的局限性65,66。特别是新型冠状病毒感染的发生,对肺损伤修复的研究提出了更迫切的要求。干/祖细胞移植目前是一种很有前途的肺部疾病治疗方法。然而,安全性和有效性仍然是临床应用方面的限制因素。病变体内干细胞扩增效率低是主要障碍。越来越多的证据表明,来源于内皮细胞的血管分泌因子对内源或者外源移植干细胞的功能性增殖和分化至关重要,哺乳动物几乎每个器官的再生潜力和稳态都受到血管分泌因子的调节。无论是基于干细胞还是基于化学药物来治疗肺部疾病,都有必要加深对肺部各种类型细胞内部机制及其之间沟通的理解。深入研究肺损伤后平衡再生与纤维化的分子机制,找到关键节点分子是目前研究的热点,然而如何对关键节点分子进行干预,开发适合的靶向编辑方法也是促进临床治疗策略开发的关键问题。参考文献1WIJSENBEEK M,SUZUKI A,MAHER T M.Interstitiallung diseasesJ.Lancet,2022,400(10354):769-786.2MOSS B J,RYTER S W,ROSAS I O.Pathogenicmechanisms underlying idiopathic pulmonary fibrosisJ.Annu Rev Pathol,2022,17:515-546.3SPAGNOLO P,KROPSKI J A,JONES M G,et al.Idiopathic pulmonary fibrosis:disease mechanisms and drugdevelopmentJ.Pharmacol Ther,2021,222:107798.4CHEN Y,DING B S.Comprehensive review of the vascularniche in regulating organ regeneration and fibrosisJ.Stem Cells Transl Med,2022,11(11):1135-1142.5MARZIANO C,GENET G,HIRSCHI K K.Vascularendothelial cell specification in health and diseaseJ.Angiogenesis,2021,24(2):213-236.6PAIK D T,TIAN L,WILLIAMS I M,et al.Single-cellRNA sequencing unveils unique transcriptomic signaturesof organ-specific endothelial cellsJ.Circulation,2020,142(19):1848-1862.7HIRSCHI K K,ROHOVSKY S A,DAMORE P A.PDGF,TGF-beta,and heterotypic cell-cell interactionsmediate endothelial cell-induced recruitment of 10T1/2cells and their differentiation to a smooth muscle fateJ.JCell Biol,1998,141(3):805-814.8HIRSCHI K K,ROHOVSKY S A,BECK L H,et al.Endothelial cells modulate the proliferation of mural cellprecursors via platelet-derived growth factor-BB andheterotypic cell contactJ.Circ Res,199,84(3):298-305.9PROULX K,LU A,SUMANAS S.Cranial vasculature inzebrafish forms by angioblast cluster-derived angiogenesisJ.Dev Biol,2010,348(1):34-46.10 NAKAYAMAA,ROQUID K A,IRING A,et al.Suppression of CCL2 angiocrine function by adrenomedullin promotes tumor growthJ.J Exp Med,2023,220(1):e20211628.11 WINKLER M,STANICZEK T,KRSCHNER S W,et al.Endothelial GATA4 controls liver fibrosis and regenerationby preventing a pathogenic switch in angiocrine signalingJ.J Hepatol,2021,74(2):380-393.12 MONELLI E,VILLACAMPA P,ZABALA-LETONA A,29(Biomedical Transformation),2023年9月,第4卷,第3期et al.Angiocrine polyamine production regulates adiposityJ.Nat Metab,2022,4(3):327-343.13 SCHMID C D,OLSAVSZKY V,REINHART M,et al.ALK1 controls hepatic vessel formation,angiodiversity,and angiocrine functions in hereditary hemorrhagic telangiectasia of the liverJ.Hepatology,2023,77(4):1211-1227.14 SANDOVICI I,GEORGOPOULOU A,PREZ-GARCAV,et al.The imprinted Igf2-Igf2r axis is critical formatching placental microvasculature expansion to fetalgrowthJ.Dev Cell,2022,57(1):63-79.e8.15 LIM J T C,KWANG L G,HO N C W,et al.Hepatocellularcarcinomaorganoidco-culturesmimicangiocrinecrosstalktogenerateinflammatorytumormicroenvironmentJ.Biomaterials,2022,284121527.16 BARKAUSKAS C E,CRONCE M J,RACKLEY C R,etal.Type 2 alveolar cells are stem cells in adult lungJ.JClin Invest,2013,123(7):3025-3036.17 DESAI T J,BROWNFIELD D G,KRASNOW M A.Alveolar progenitor and stem cells in lung development,renewal and cancerJ.Nature,2014,507(7491):190-194.18 EVANS M J,CABRAL L J,STEPHENS R J,et al.Transformation of alveolar type 2 cells to type 1 cellsfollowing exposure to NO2J.Exp Mol Pathol,1975,22(1):142-150.19 RYANTO G R T,IKEDA K,MIYAGAWA K,et al.Anendothelial activin A-bone morphogenetic protein receptortype 2 link is overdriven in pulmonary hypertensionJ.Nat Commun,2021,12(1):1720.20 HISATA S,RACANELLI A C,KERMANI P,et al.Reversal of emphysema by restoration of pulmonaryendothelial cellsJ.J Exp Med,2021,218(8):e20200938.21 ZHOU B,MAGANA L,HONG Z,et al.The angiocrineRspondin3 instructs interstitial macrophage transition viametabolic-epigeneticreprogrammingandresolvesinflammatory injuryJ.Nat Immunol,2020,21(11):1430-1443.22 CHEN Q,REHMAN J,CHAN M,et al.Angiocrinesphingosine-1-phosphate activation of s1pr2-yap signalingaxis in alveolar type ii cells is essential for lung repairJ.Cell Rep,2020,31(13):107828.23 VOLPE M C,CIUCCI G,ZANDOMENEGO G,et al.Flt1 produced by lung endothelial cells impairs ATII celltransdifferentiation and repair in pulmonary fibrosisJ.Cell Death Dis.,2023,14(7):437.24 CAO Z,LIS R,GINSBERG M,et al.Targeting of thepulmonary capillary vascular niche promotes lung alveolarrepair and ameliorates fibrosisJ.Nat Med,2016,22(2):154-162.25 DZAU V J,INOUYE S K,ROWE J W,et al.Enablinghealthful aging for all-the national academy of medicinegrand challenge in healthy longevityJ.N Engl J Med,2019,381(18):1699-1701.26 DE CABO R,MATTSON M P.Effects of intermittentfasting on health,aging,and diseaseJ.N Engl J Med,2019,381(26):2541-2551.27 QUIRK J D,SUKSTANSKII A L,WOODS J C,et al.Experimental evidence of age-related adaptive changes inhuman acinar airwaysJ.J Appl Physiol,2016,120(2):159-165.28 VERBEKEN E K,CAUBERGHS M,MERTENS I,et al.The senile lung:comparison with normal and emphysematous lungs 2.Functional aspectsJ.Chest,1992,101(3):800-809.29 CHO S J,STOUT-DELGADO H W.Aging and lungdiseaseJ.Annu Rev Physiol,2020,82:433-459.30 SCHNEIDER J L,ROWE J H,GARCIA-DE-ALBA C,et al.The aging lung:physiology,disease,and immunityJ.Cell,2021,184(8):1990-2019.31 CHEN Y,PU Q,MA Y,et al.Aging reprograms thehematopoietic-vascular niche to impede regeneration andpromote fibrosisJ.Cell Metab,2021,33(2):395-410.e4.32 DING B S,YANG D,SWENDEMAN S L,et al.Agingsuppresses sphingosine-1-phosphate chaperone apom incirculation resulting in maladaptive organ repairJ.DevCell,2020,53(6):677-690.e4.33 BASIL M C,KATZEN J,ENGLER A E,et al.Thecellular and physiological basis for lung repair andregeneration:past,present,and futureJ.Cell Stem Cell,2020,26(4):482-502.34 KOLB P,UPAGUPTA C,VIERHOUT M,et al.Theimportance of interventional timing in the bleomycinmodel of pulmonary fibrosisJ.Eur Respir J,2020,55(6):1901105.35 TASHIRO J,RUBIO G A,LIMPER A H,et al.ExploringanimalmodelsthatresembleidiopathicpulmonaryfibrosisJ.Front Med,2017,4:118.36 JENKINS R G,MOORE B B,CHAMBERS R C,et al.An official American thoracic society workshop report:use of animal models for the preclinical assessment ofpotential therapies for pulmonary fibrosisJ.Am J RespirCell Mol Biol,2017,56(5):667-679.37 DEGRYSE A L,TANJORE H,XU X C,et al.Repetitiveintratrachealbleomycinmodelsseveralfeaturesofidiopathic pulmonary fibrosisJ.Am J Physiol Lung CellMol Physiol,2010,299(4):L442-L452.38 DELLA LATTA V,CECCHETTINI A,DEL RY S,et al.Bleomycin in the setting of lung fibrosis induction:frombiological mechanisms to counteractionsJ.PharmacolRes,2015,97:122-130.30(Biomedical Transformation),2023年9月,第4卷,第3期39 CHUA F,GAULDIE J,LAURENT G J.Pulmonaryfibrosis:searching for model answersJ.Am J RespirCell Mol Biol,200,33(1):9-13.40 GEORGE P M,WELLS A U,JENKINS R G.Pulm