625uHnóŒÆ2016côÖa¬ÆïÄ)\Æ•ÁÁò£ž3‰K’þ‰‰§Áòþ‰‰Ã�§Á��ò7L†‰K’˜Ó�£¤‰8¶¡µêƩ۷^;’µÄ:êÆ,A^êÆ,OŽêÆ,VÇØ†ênÚO,$ÊÆ†››Ø�3•1.(12©)¦4•limx→0+�����1x+�1x+�1x−����1x−�1x+�1x�.2.(12©)(½a,b�Š,¦¼êf(x)=���������1x(1−cosax),x<0,0,x=0,1xln(b+x2),x>03(−∞,+∞)S??Œ�,¿¦§��ê.3.(12©)OŽ4•limn→∞1nn�n(n+1)(n+2)···(2n−1).4.(12©)?ؼêy=���sinπx,�x•knê,0,�x•Ãnê�ëY5,¿•Ñmä:a..11•5.(12©)�a,b•~ê,?ØÈ©�10xa−1(1−x)b−1dx�Âñ5.6.(12©)y²?ê∞�n=0�13n+1+13n+2−13n+3�´uÑ�.7.(13©)�f(x)3[0,1]þëYŒ‡,y²limn→∞n�10xnf(x)dx=f(1).8.(13©)y²¼êf(x,y)=�����(x2+y2)sin1�x2+y2,x2+y2̸=0,0,x2+y2=03(0,0)?ëY…�ê•3,��ê3:(0,0)?ØëY,�f(x,y)3:(0,0)?Œ‡.9.(13©)(1)òarctanxÐm¤˜?ê,¦ÂñŒ».(2)|^(1)y²π=4−43+45−···+(−1)n42n+1+···.(3)|^(2)¥�úªCqOŽπ�Š,I‡¦õ�‘�Ú,Ø�ج‡L10−m(m•g,ê).12•10.(13©)�3,4Ý/«•DS∂P∂y=∂Q∂x.Áyu(x,y)=�xx0P(x,y)dx+�yy0Q(x0,y)dy+C•Pdx+Qdy��¼ê,Ù¥C=u(x0,y0).11.(13©)OŽe�-¡�x2a2+y2b2+z2c2�2=x2a2+y2b2¤Œ¤�NÈ.12.(13©)�k´~ê,L•-‚x2+xy+y2=r2,•_ž�••.½ÂI(r)=�Lxdy−ydx(x2+y2)k.¦limr→+∞I(r).13•