温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
浙江省
富阳
中高
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在中,分别为所对的边,若函数
有极值点,则的范围是( )
A. B.
C. D.
2.已知.给出下列判断:
①若,且,则;
②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;
③若在上恰有7个零点,则的取值范围为;
④若在上单调递增,则的取值范围为.
其中,判断正确的个数为( )
A.1 B.2 C.3 D.4
3.公差不为零的等差数列{an}中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列{an}的公差等于( )
A.1 B.2 C.3 D.4
4.已知,且,则的值为( )
A. B. C. D.
5.已知函数,要得到函数的图象,只需将的图象( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
6.已知直线过圆的圆心,则的最小值为( )
A.1 B.2 C.3 D.4
7.已知,,则( )
A. B. C. D.
8.函数的大致图象是( )
A. B.
C. D.
9.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )
A.1 B. C. D.0
10.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).
A.6500元 B.7000元 C.7500元 D.8000元
11.已知双曲线的右焦点为为坐标原点,以为直径的圆与双 曲线的一条渐近线交于点及点,则双曲线的方程为( )
A. B. C. D.
12.已知复数,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数在上单调递增,则实数a值范围为_________.
14.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.
15.已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_____.
16.已知变量,满足约束条件,则的最小值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)当时,试求曲线在点处的切线;
(2)试讨论函数的单调区间.
18.(12分)已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
19.(12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量的平均数和众数;
(2)将表示为的函数;
(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.
20.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.
(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;
(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.
21.(12分)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长为且面积为的菱形.
(1)求椭圆的方程;
(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.
22.(10分)为迎接2023年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:
(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(Ⅱ)从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;
(Ⅲ)记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
试题分析:由已知可得有两个不等实根.
考点:1、余弦定理;2、函数的极值.
【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.
2、B
【答案解析】
对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.
【题目详解】
因为,所以周期.
对于①,因为,所以,即,故①错误;
对于②,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,,所以②错误;
对于③,令,可得,则,
因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,
所以,即,解得,故③正确;
对于④,因为,且,所以,解得,又,所以,故④正确.
故选:B.
【答案点睛】
本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.
3、B
【答案解析】
设数列的公差为.由,成等比数列,列关于的方程组,即求公差.
【题目详解】
设数列的公差为,
①.
成等比数列,②,
解①②可得.
故选:.
【答案点睛】
本题考查等差数列基本量的计算,属于基础题.
4、A
【答案解析】
由及得到、,进一步得到,再利用两角差的正切公式计算即可.
【题目详解】
因为,所以,又,所以,
,所以.
故选:A.
【答案点睛】
本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.
5、A
【答案解析】
根据函数图像平移原则,即可容易求得结果.
【题目详解】
因为,
故要得到,只需将向左平移个单位长度.
故选:A.
【答案点睛】
本题考查函数图像平移前后解析式的变化,属基础题.
6、D
【答案解析】
圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.
【题目详解】
圆的圆心为,
由题意可得,即,,,
则,当且仅当且即时取等号,
故选:.
【答案点睛】
本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.
7、D
【答案解析】
分别解出集合然后求并集.
【题目详解】
解:,
故选:D
【答案点睛】
考查集合的并集运算,基础题.
8、A
【答案解析】
用排除B,C;用排除;可得正确答案.
【题目详解】
解:当时,,,
所以,故可排除B,C;
当时,,故可排除D.
故选:A.
【答案点睛】
本题考查了函数图象,属基础题.
9、B
【答案解析】
根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1.计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离.
【题目详解】
由题意,白蚂蚁爬行路线为AA1→A1D1→D1C1→C1C→CB→BA,
即过1段后又回到起点,
可以看作以1为周期,
由,
白蚂蚁爬完2020段后到回到C点;
同理,黑蚂蚁爬行路线为AB→BB1→B1C1→C1D1→D1D→DA,
黑蚂蚁爬完2020段后回到D1点,
所以它们此时的距离为.
故选B.
【答案点睛】
本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.
10、D
【答案解析】
设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.
【题目详解】
设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.
故选D.
【答案点睛】
本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.
11、C
【答案解析】
根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.
【题目详解】
由双曲线,
则渐近线方程:,
,
连接,则,解得,
所以,解得.
故双曲线方程为.
故选:C
【答案点睛】
本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.
12、B
【答案解析】
利用复数除法、加法运算,化简求得,再求得
【题目详解】
,故.
故选:B
【答案点睛】
本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由在上恒成立可求解.
【题目详解】
,
令,∵,∴,
又,,从而,令,
问题等价于在时恒成立,∴,解得.
故答案为:.
【答案点睛】
本题考查函数的单调性,解题关键是问题转化为恒成立,利用换元法和二次函数的性质易求解.
14、
【答案解析】
根据程序框图得到程序功能,结合分段函数进行计算即可.
【题目详解】
解:程序的功能是计算,
若输出的实数的值为,
则当时,由得,
当时,由,此时无解.
故答案为:.
【答案点睛】
本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.
15、2.
【答案解析】
由双曲线的一条渐近线为,解得.求出双曲线的右焦点,利用点到直线的距离公式求解即可.
【题目详解】
双曲线的一条渐近线为
解得:
双曲线的右焦点为
焦点到这条渐近线的距离为:
本题正确结果:
【答案点睛】
本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属于基础题.
16、-5
【答案解析】
画出,满足的可行域,当目标函数经过点时,最小,求解即可。
【题目详解】
画出,满足的可行域,由解得,当目标函数经过点时,取得最小值为-5.
【答案点睛】
本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想。需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可