分享
2023届宁夏银川六中高三下学期联合考试数学试题(含解析).doc
下载文档

ID:33276

大小:2.28MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 宁夏银川 中高 下学 联合 考试 数学试题 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知,,,则( ) A. B. C. D. 2.执行如图所示的程序框图,输出的结果为( ) A. B.4 C. D. 3.已知集合.为自然数集,则下列表示不正确的是( ) A. B. C. D. 4.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( ) A. B. C. D. 5.已知直线过圆的圆心,则的最小值为( ) A.1 B.2 C.3 D.4 6.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是( ) A.() B.() C.() D.() 7.已知函数,则函数的图象大致为( ) A. B. C. D. 8.某四棱锥的三视图如图所示,该几何体的体积是( ) A.8 B. C.4 D. 9.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是 A.10 B.9 C.8 D.7 10.已知全集,集合,则=( ) A. B. C. D. 11.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( ) A. B. C. D. 12.设,且,则( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知非零向量,满足,且,则与的夹角为____________. 14.在中,,,,则绕所在直线旋转一周所形成的几何体的表面积为______________. 15.已知集合,若,且,则实数所有的可能取值构成的集合是________. 16.函数的图象向右平移个单位后,与函数的图象重合,则_____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛. (1)求甲同学至少抽到2道B类题的概率; (2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望. 18.(12分)已知函数. (1)求函数f(x)的最小正周期; (2)求在上的最大值和最小值. 19.(12分)已知数列,满足. (1)求数列,的通项公式; (2)分别求数列,的前项和,. 20.(12分)在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形. (1)求椭圆C的方程; (2)假设直线l:与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围. 21.(12分)已知函数的导函数的两个零点为和. (1)求的单调区间; (2)若的极小值为,求在区间上的最大值. 22.(10分)有最大值,且最大值大于. (1)求的取值范围; (2)当时,有两个零点,证明:. (参考数据:) 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果. 【题目详解】 , 所以,即. 故选:C. 【答案点睛】 本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易. 2、A 【答案解析】 模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果. 【题目详解】 程序运行过程如下: ,;,;,; ,;,; ,;,,退出循环,输出结果为, 故选:A. 【答案点睛】 该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目. 3、D 【答案解析】 集合.为自然数集,由此能求出结果. 【题目详解】 解:集合.为自然数集, 在A中,,正确; 在B中,,正确; 在C中,,正确; 在D中,不是的子集,故D错误. 故选:D. 【答案点睛】 本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题. 4、C 【答案解析】 求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得 【题目详解】 抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以. 故选:C 【答案点睛】 本小题主要考查抛物线的弦长的求法,属于基础题. 5、D 【答案解析】 圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【题目详解】 圆的圆心为, 由题意可得,即,,, 则,当且仅当且即时取等号, 故选:. 【答案点睛】 本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题. 6、B 【答案解析】 根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间. 【题目详解】 依题意得,,即, 解得或(其中,).① 又, 即(其中).② 由①②得或, 即或(其中,,),因此的最小值为. 因为,所以(). 又,所以,所以, 令(),则(). 因此,当取得最小值时,的单调递增区间是(). 故选:B 【答案点睛】 此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目. 7、A 【答案解析】 用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像. 【题目详解】 设,由于,排除B选项;由于,所以,排除C选项;由于当时,,排除D选项.故A选项正确. 故选:A 【答案点睛】 本题考查了函数图像的性质,属于中档题. 8、D 【答案解析】 根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积. 【题目详解】 根据三视图知,该几何体是侧棱底面的四棱锥,如图所示: 结合图中数据知,该四棱锥底面为对角线为2的正方形, 高为PA=2, ∴四棱锥的体积为. 故选:D. 【答案点睛】 本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题. 9、B 【答案解析】 根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值. 【题目详解】 由抛物线标准方程可知p=2 因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知 所以 因为 为线段长度,都大于0,由基本不等式可知 ,此时 所以选B 【答案点睛】 本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题. 10、D 【答案解析】 先计算集合,再计算,最后计算. 【题目详解】 解: , , . 故选:. 【答案点睛】 本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题. 11、C 【答案解析】 可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系. 【题目详解】 解:因为,即,又, 设,根据条件,,; 若,,且,则:; 在上是减函数; ; ; 在上是增函数; 所以, 故选:C 【答案点睛】 考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题. 12、C 【答案解析】 将等式变形后,利用二次根式的性质判断出,即可求出的范围. 【题目详解】 即 故选:C 【答案点睛】 此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目. 二、填空题:本题共4小题,每小题5分,共20分。 13、(或写成) 【答案解析】 设与的夹角为,通过,可得,化简整理可求出,从而得到答案. 【题目详解】 设与的夹角为 可得, 故,将代入可得 得到, 于是与的夹角为. 故答案为:. 【答案点睛】 本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力. 14、 【答案解析】 由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得. 【题目详解】 解:由题知该旋转体为两个倒立的圆锥底对底组合在一起, 在中,,,,如下图所示, 底面圆的半径为, 则所形成的几何体的表面积为. 故答案为:. 【答案点睛】 本题考查旋转体的表面积计算问题,属于基础题. 15、. 【答案解析】 化简集合,由,以及,即可求出结论. 【题目详解】 集合,若, 则的可能取值为,0,2,3, 又因为, 所以实数所有的可能取值构成的集合是. 故答案为:. 【答案点睛】 本题考查集合与元素的关系,理解题意是解题的关键,属于基础题. 16、 【答案解析】 根据函数图象的平移变换公式求得变换后的函数解析式,再利用诱导公式求得满足的方程,结合题中的范围即可求解. 【题目详解】 由函数图象的平移变换公式可得, 函数的图象向右平移个单位后, 得到的函数解析式为, 因为函数, 所以函数与函数的图象重合, 所以,即, 因为,所以. 故答案为: 【答案点睛】 本题考查函数图象的平移变换和三角函数的诱导公式;诱导公式的灵活运用是求解本题的关键;属于中档题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1);(2)分布列见解析,期望为. 【答案解析】 (1)甲同学至少抽到2道B类题包含两个事件:一个抽到2道B类题,一个是抽到3个B类题,计算出抽法数后可求得概率; (2)的所有可能值分别为,依次计算概率得分布列,再由期望公式计算期望. 【题目详解】 (1)令“甲同学至少抽到2道B类题”为事件,则抽到2道类题有种取法,抽到3道类题有种取法, ∴; (2)的所有可能值分别为, ,, ,, ∴的分布列为: 0 1 2 3 【答案点睛】 本题考查古典概型,考查随机变量的概率分布列和数学期望.解题关键是掌握相互独立事件同时发生的概率计算公式. 18、(1);(2)见解析 【答案解析】 将函数解析式化简即可求出函数的最小正周期 根据正弦函数的图象和性质即可求出函数在定义域上的最大值和最小值 【题目详解】 (Ⅰ)由题意得 原式 的最小正周期为.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开