分享
2014考研有机化学九十六种反应机理深度解析辅导讲义©研途网 YenTo.cn 整理 ✚关注公众号(yentocn)资料多又好 更新早知道.pdf
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2014考研有机化学九十六种反应机理深度解析辅导讲义 ©研途网 YenTo.cn 整理 关注公众号yentocn,资料多又好, 更新早知道 2014 考研 有机化学 九十六 反应 机理 深度 解析
Arbuzov 反应 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:RI RBr RCl。除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a-或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 RX 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即 R=R),则 Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR)2 和次亚膦酸酯 R2POR 也能发生该类反应,例如:反应机理 反应机理 一般认为是按 SN2 进行的分子内重排反应:反应实例反应实例 返回返回 Baeyer-Villiger 反应 反应机理反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3-苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。反应实例反应实例 酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。这类氧化剂的特点是反应速率快,反应温度一般在1040之间,产率高。返回返回 Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。反应机理反应机理 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。反应实例反应实例 返回返回 Beckmann重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例反应实例 返回返回 有机化学反应机理有机化学反应机理 一、Arbuzov反应 三、Baeyer-villiger 反应 五、Birch 还原 七、Bucherer 反应 九、Berthsen,A.Y 吖啶合成法 十 一、Chichibabin 反应 十 三、Claisen-Schmidt 反应 十 五、Clemmensen 还原 十 七、Cope 消除反应 十 九、Curtius 反应 二十一、Dakin 反应 二十三、Edvhweiler-Clarke 反应 二十五、Favorskii 反应 二十七、Friedel-Crafts 烷基化反应 二十九、Fries 重排 三十一、Gabriel 合成法 三十三、Gattermann-Koch 反应 三十五、Hantzsch 合成法 三十七、Hell-Volhard-Zelinski反应 三十九、Hofmann 烷基化 四十一、Hofmann 重排(降解)四十三、Hunsdiecker 反应 四十五、Knoevenagel 反应 二、Arndt-Eister 反应 四、Beckmann 重排 六、Bouveault-Blanc 还原 八、Bamberger,E.重排 十、Cannizzaro 反应 十 二、Claisen 酯缩合反应 十 四、Claisen 重排 十 六、Combes 喹啉合成法 十 八、Cope 重排 二 十、Crigee,R 反应 二十二、Elbs 反应 二十四、Elbs,K 过硫酸钾氧化法 二十六、Favorskii 重排 二十八、Friedel-Crafts 酰基化反应 三 十、Fischer,O-Hepp,E 重排 三十二、Gattermann 反应 三十四、Gomberg-Bachmann 反应 三十六、Haworth 反应 三十八、Hinsberg 反应 四十、Hofmann 消除反应 四十二、Houben-Hoesch 反应 四十四、Kiliani 氯化增碳法 四十六、Koble 反应 四十八、Kolbe,H.Syntbexis of Nitroparsffini 合成 四十七、Koble-Schmitt 反应 四十九、Leuckart 反应 五十一、Mannich 反应 五十三、Michael 加成反应 五十五、Norrish 和 型裂 五十七、Orton,K.J.P 重排 五十九、Pschorr 反应 六十一、Prins,H.J 反应 六十三、Perkin,W.H 反应 六十五、Reformatsky 反应 六十七、Reppe 合成法 六十九、Rosenmund 还原 七十一、Riley,H.L 氧化法 七十三、Schiemann 反应 七十五、Skraup 合成法 七十七、Stepen 还原-氰还原为醛七十九、Strecker 氨基酸合成法 八十一、Schiemann,G.反应 八十三、Tiffeneau-Demjanov 重排八十五、Thorpe,J.F.缩合 八十七、Ullmann 反应 八十九、Vilsmeier 反应 九十一、Williamson 合成法 九十三、Wagner-Meerwein 重排 九十五、Wittig-Horner 反应 参考资料 五 十、Lossen 反应 五十二、Meerwein-Ponndorf 反应 五十四、Martius,C.A.重排 五十六、Oppenauer 氧化 五十八、Paal-Knorr 反应 六 十、Prileschajew,N 反应 六十二、Pinacol 重排 六十四、Pictet-Spengler异喹啉合成法 六十六、Reimer-Tiemann 反应 六十八、Robinson 缩环反应 七 十、Ruff 递降反应 七十二、Sandmeyer 反应 七十四、Schmidt 反应 七十六、Sommelet-Hauser 反应 七十八、Stevens 重排 八 十、异喹啉合成法 八十二、Schmidin,J.乙烯酮合成 八十四、Tischenko,V.反应 八十六、Tollens,B.缩合 八十八、Urech,F.羟腈合成法 九 十、Van Ekenstein,W,A 重排 九十二、Wacker 反应 九十四、Wittig 反应 九十六、Wohl 递降反应 返回 返回 Bouveault-Blanc 还原 脂肪族羧酸酯可用金属钠和醇还原得一级醇。,-不饱和羧酸酯还原得相应的饱和醇。芳香酸酯也可进行本反应,但收率较低。本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。反应机理反应机理 首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中夺取一个质子转变为自由基,再从钠得一个电子生成负离子,消除烷氧基成为醛,醛再经过相同的步骤还原成钠,再酸化得到相应的醇。反应实例反应实例 醛酮也可以用本法还原,得到相应的醇:返回返回 Bucherer 反应 萘酚及其衍生物在亚硫酸或亚硫酸氢盐存在下和氨进行高温反应,可得萘胺衍生物,反应是可逆的。反应时如用一级胺或二级胺与萘酚反应则制得二级或三级萘胺。如有萘胺制萘酚,可将其加入到热的亚硫酸氢钠中,再加入碱,经煮沸除去氨而得。反应机理反应机理 本反应的机理为加成消除过程,反应的第一步(无论从哪个方向开始)都是亚硫酸氢钠加成到环的双键上得到烯醇()或烯胺(),它们再进行下一步互变异构为酮()或亚胺():反应实例反应实例 返回返回 有机化学反应机理有机化学反应机理 一、Arbuzov反应 三、Baeyer-villiger 反应 五、Birch 还原 七、Bucherer 反应 九、Berthsen,A.Y 吖啶合成法 十 一、Chichibabin 反应 十 三、Claisen-Schmidt 反应 十 五、Clemmensen 还原 十 七、Cope 消除反应 十 九、Curtius 反应 二十一、Dakin 反应 二十三、Edvhweiler-Clarke 反应 二十五、Favorskii 反应 二十七、Friedel-Crafts 烷基化反应 二十九、Fries 重排 三十一、Gabriel 合成法 三十三、Gattermann-Koch 反应 三十五、Hantzsch 合成法 三十七、Hell-Volhard-Zelinski反应 三十九、Hofmann 烷基化 四十一、Hofmann 重排(降解)四十三、Hunsdiecker 反应 四十五、Knoevenagel 反应 二、Arndt-Eister 反应 四、Beckmann 重排 六、Bouveault-Blanc 还原 八、Bamberger,E.重排 十、Cannizzaro 反应 十 二、Claisen 酯缩合反应 十 四、Claisen 重排 十 六、Combes 喹啉合成法 十 八、Cope 重排 二 十、Crigee,R 反应 二十二、Elbs 反应 二十四、Elbs,K 过硫酸钾氧化法 二十六、Favorskii 重排 二十八、Friedel-Crafts 酰基化反应 三 十、Fischer,O-Hepp,E 重排 三十二、Gattermann 反应 三十四、Gomberg-Bachmann 反应 三十六、Haworth 反应 三十八、Hinsberg 反应 四十、Hofmann 消除反应 四十二、Houben-Hoesch 反应 四十四、Kiliani 氯化增碳法 四十六、Koble 反应 四十八、Kolbe,H.Syntbexis of Nitroparsffini 合成 四十七、Koble-Schmitt 反应 四十九、Leuckart 反应 五十一、Mannich 反应 五十三、Michael 加成反应 五十五、Norrish 和 型裂 五十七、Orton,K.J.P 重排 五十九、Pschorr 反应 六十一、Prins,H.J 反应 六十三、Perkin,W.H 反应 六十五、Reformatsky 反应 六十七、Reppe 合成法 六十九、Rosenmund 还原 七十一、Riley,H.L 氧化法 七十三、Schiemann 反应 七十五、Skraup 合成法 七十七、Stepen 还原-氰还原为醛七十九、Strecker 氨基酸合成法 八十一、Schiemann,G.反应 八十三、Tiffeneau-Demjanov 重排八十五、Thorpe,J.F.缩合 八十七、Ullmann 反应 八十九、Vilsmeier 反应 九十一、Williamson 合成法 九十三、Wagner-Meerwein 重排 九十五、Wittig-Horner 反应 参考资料 五 十、Lossen 反应 五十二、Meerwein-Ponndorf 反应 五十四、Martius,C.A.重排 五十六、Oppenauer 氧化 五十八、Paal-Knorr 反应 六 十、Prileschajew,N 反应 六十二、Pinacol 重排 六十四、Pictet-Spengler异喹啉合成法 六十六、Reimer-Tiemann 反应 六十八、Robinson 缩环反应 七 十、Ruff 递降反应 七十二、Sandmeyer 反应 七十四、Schmidt 反应 七十六、Sommelet-Hauser 反应 七十八、Stevens 重排 八 十、异喹啉合成法 八十二、Schmidin,J.乙烯酮合成 八十四、Tischenko,V.反应 八十六、Tollens,B.缩合 八十八、Urech,F.羟腈合成法 九 十、Van Ekenstein,W,A 重排 九十二、Wacker 反应 九十四、Wittig 反应 九十六、Wohl 递降反应 返回 返回 Berthsen,A.Y 吖啶合成法吖啶合成法 二芳基胺类与羧酸在无水ZnCl2存在下加热起缩合作用,生成吖啶类化合物。反应机理反应机理 反应机理不详 反应实例反应实例 返回返回 有机化学反应机理有机化学反应机理 一、Arbuzov反应 三、Baeyer-villiger 反应 五、Birch 还原 七、Bucherer 反应 九、Berthsen,A.Y 吖啶合成法 十 一、Chichibabin 反应 十 三、Claisen-Schmidt 反应 十 五、Clemmensen 还原 十 七、Cope 消除反应 十 九、Curtius 反应 二十一、Dakin 反应 二十三、Edvhweiler-Clarke 反应 二十五、Favorskii 反应 二十七、Friedel-Crafts 烷基化反应 二十九、Fries 重排 三十一、Gabriel 合成法 三十三、Gattermann-Koch 反应 三十五、Hantzsch 合成法 三十七、Hell-Volhard-Zelinski反应 三十九、Hofmann 烷基化 四十一、Hofmann 重排(降解)四十三、Hunsdiecker 反应 四十五、Knoevenagel 反应 二、Arndt-Eister 反应 四、Beckmann 重排 六、Bouveault-Blanc 还原 八、Bamberger,E.重排 十、Cannizzaro 反应 十 二、Claisen 酯缩合反应 十 四、Claisen 重排 十 六、Combes 喹啉合成法 十 八、Cope 重排 二 十、Crigee,R 反应 二十二、Elbs 反应 二十四、Elbs,K 过硫酸钾氧化法 二十六、Favorskii 重排 二十八、Friedel-Crafts 酰基化反应 三 十、Fischer,O-Hepp,E 重排 三十二、Gattermann 反应 三十四、Gomberg-Bachmann 反应 三十六、Haworth 反应 三十八、Hinsberg 反应 四十、Hofmann 消除反应 四十二、Houben-Hoesch 反应 四十四、Kiliani 氯化增碳法 四十六、Koble 反应 四十八、Kolbe,H.Syntbexis of Nitroparsffini 合成 四十七、Koble-Schmitt 反应 四十九、Leuckart 反应 五十一、Mannich 反应 五十三、Michael 加成反应 五十五、Norrish 和 型裂 五十七、Orton,K.J.P 重排 五十九、Pschorr 反应 六十一、Prins,H.J 反应 六十三、Perkin,W.H 反应 六十五、Reformatsky 反应 六十七、Reppe 合成法 六十九、Rosenmund 还原 七十一、Riley,H.L 氧化法 七十三、Schiemann 反应 七十五、Skraup 合成法 七十七、Stepen 还原-氰还原为醛七十九、Strecker 氨基酸合成法 八十一、Schiemann,G.反应 八十三、Tiffeneau-Demjanov 重排八十五、Thorpe,J.F.缩合 八十七、Ullmann 反应 八十九、Vilsmeier 反应 九十一、Williamson 合成法 九十三、Wagner-Meerwein 重排 九十五、Wittig-Horner 反应 参考资料 五 十、Lossen 反应 五十二、Meerwein-Ponndorf 反应 五十四、Martius,C.A.重排 五十六、Oppenauer 氧化 五十八、Paal-Knorr 反应 六 十、Prileschajew,N 反应 六十二、Pinacol 重排 六十四、Pictet-Spengler异喹啉合成法 六十六、Reimer-Tiemann 反应 六十八、Robinson 缩环反应 七 十、Ruff 递降反应 七十二、Sandmeyer 反应 七十四、Schmidt 反应 七十六、Sommelet-Hauser 反应 七十八、Stevens 重排 八 十、异喹啉合成法 八十二、Schmidin,J.乙烯酮合成 八十四、Tischenko,V.反应 八十六、Tollens,B.缩合 八十八、Urech,F.羟腈合成法 九 十、Van Ekenstein,W,A 重排 九十二、Wacker 反应 九十四、Wittig 反应 九十六、Wohl 递降反应 返回 返回 Chichibabin 反应 杂环碱类,与碱金属的氨基物一起加热时发生胺化反应,得到相应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果位已被占据,则得-氨基吡啶,但产率很低。本法是杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应。喹啉、吡嗪、嘧啶、噻唑类化合物较为困难。氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:反应机理反应机理 反应机理还不是很清楚,可能是吡啶与氨基首先加成,(),()转移一个负离子给质子给予体(AH),产生一分子氢气和形成小量的2-氨基吡啶(),此小量的()又可以作为质子的给予体,最后的产物是2-氨基吡啶的钠盐,用水分解得到2-氨基吡啶:吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。返回返回 反应实例反应实例 Claisen 酯缩合反应 含有-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到-酮酸酯。如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。二元羧酸酯的分子内酯缩合见Dieckmann缩合反应。反应机理反应机理 乙酸乙酯的-氢酸性很弱(pKa-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pKa15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。常用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等。反应实例反应实例 如果酯的-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才能把酯变为负离子。如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不能发生反应:两种不同的酯也能发生酯缩合,理论上可得到四种不同的产物,称为混合酯缩合,在制备上没有太大意义。如果其中一个酯分子中既无-氢原子,而且烷氧羰基又比较活泼时,则仅生成一种缩合产物。如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等。与其它含-氢原子的酯反应时,都只生成一种缩合产物。实际上这个反应不限于酯类自身的缩合,酯与含活泼亚甲基的化合物都可以发生这样的缩合反应,这个反应可以用下列通式表示:返回返回 ClaisenSchmidt 反应 一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到,不饱和醛或酮:反应机理反应机理 反应实例反应实例 返回返回 Claisen 重排 烯丙基芳基醚在高温(200C)下可以重排,生成烯丙基酚。当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。交叉反应实验证明:Claisen重排是分子内的重排。采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。反应机理反应机理 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。从烯丙基芳基醚重排为邻烯丙基酚经过一次3,3s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次3,3s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次3,3s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。反应实例反应实例 Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。返回返回 Clemmensen 还原 醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。反应机理反应机理 本反应的反应机理较复杂,目前尚不很清楚。反应实例反应实例 返回返回 Combes 喹啉合成法 Combes合成法是合成喹啉的另一种方法,是用芳胺与1,3-二羰基化合物反应,首先得到高产率的-氨基烯酮,然后在浓硫酸作用下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水得到喹啉。反应机理反应机理 在氨基的间位有强的邻、对位定位基团存在时,关环反应容易发生;但当强邻、对位定位基团存在于氨基的对位时,则不易发生关环反应。反应实例反应实例 返回返回 Cope 消除反应 叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二取代羟胺,产率很高。实际上只需将叔胺与氧化剂放在一起,不需分离出氧化叔胺即可继续进行反应,例如在干燥的二甲亚砜或四氢呋喃中这个反应可在室温进行。此反应条件温和、副反应少,反应过程中不发生重排,可用来制备许多烯烃。当氧化叔胺的一个烃基上二个位有氢原子存在时,消除得到的烯烃是混合物,但是 Hofmann产物为主;如得到的烯烃有顺反异构时,一般以 E-型为主。例如:反应机理反应机理 这个反应是E2顺式消除反应,反应过程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要产生这样的环状结构,氨基和-氢原子必须处于同一侧,并且在形成五员环过度态时,,-碳原子上的原子基团呈重叠型,这样的过度态需要较高的活化能,形成后也很不稳定,易于进行消除反应。反应实例反应实例 返回返回 Cope 重排 1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为 C-烯丙基的重排反应(Claisen 重排)反应称为Cope重排。这个反应30多年来引起人们的广泛注意。1,5-二烯在150200单独加热短时间就容易发生重排,并且产率非常好。Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。例如:内消旋3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z,E)-2,6辛二烯:反应机理反应机理 Cope重排是3,3s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:反应实例反应实例 返回返回 Curtius 反应 酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则得到胺:反应机理反应机理 反应实例反应实例 返回返回 Crigee,R 反应 1,2-二元醇类的氧化产物因所用的氧化剂的种类而不同。用K2Cr2O7或KMnO4氧化时生成酸类。用特殊氧化剂四乙醋酸铅在CH3COOH或苯等不活泼有机溶剂中缓和氧化,生成二分子羰基化合物(醛或酮)。氧化反应也可以在酸催化剂(三氯醋酸)存在下进行。本反应被广泛地应用于研究醇类结构及制备醛、酮类,产率很高。反应机理反应机理 反应过程中先生成环酯中间产物,进一步C-C键裂开成醛或酮。酸催化的场合,反应历程可以用下式表示:反应实例反应实例 返回返回 Dakin 反应 酚醛或酚酮类用H2O2在NaOH存在下氧化时,可将分子中的-CHO基或CH3CO-基被-OH基所置换,生成相对应的酚类。本反应可利用以制备多远酚类。反应机理反应机理 反应实例反应实例 返回返回 Elbs 反应 羰基的邻位有甲基或亚甲基的二芳基酮,加热时发生环化脱氢作用,生成蒽的衍生物:由于这个反应通常是在回流温度或高达400450 C的温度范围内进行,不用催化剂和溶剂,直到反应物没有水放出为止,在这样的高温条件下,一部分原料和产物发生碳化,部分原料酮被释放出的水所裂解,烃基发生消除或降解以及分子重排等副反应,致使产率不高。反应机理 反应机理 本反应的机理尚不清楚。反应实例反应实例 返回返回 Edvhweiler-Clarke反应 在过量甲酸存在下,一级胺或二级胺与甲醛反应,得到甲基化后的三级胺:甲醛在这里作为一个甲基化试剂。反应机理反应机理 反应实例反应实例 返回返回 Elbs,K.过硫酸钾氧化法 将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类。分子中的醛基或双键等都不影响。产率约2048%。过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,变成硝基化合物。反应机理反应机理 反应实例反应实例 返回返回 Favorskii重排 a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小。如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较大的四员环。反应机理反应机理 反应实例反应实例 返回返回 Favorskii重排 a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小。如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较大的四员环。反应机理反应机理 反应实例反应实例 返回返回 Friedel-Crafts烷基化反应 芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3,H2SO4,H3PO4,BF3,HF等)存在下,发生芳环的烷基化反应。卤代烃反应的活泼性顺序为:RF RCl RBr RI;当烃基超过3个碳原子时,反应过程中易发生重排。反应机理反应机理 首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体s-络合物,然后失去一个质子得到发生亲电取代产物:反应实例反应实例 返回返回 Friedel-Crafts 酰基化反应 芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。反应机理反应机理 反应实例反应实例 返回返回 Fries重排 酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等。例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物。反应温度对邻、对位产物比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制)。反应机理反应机理 反应实例反应实例 返回返回 Fischer,O-Hepp,E 重排 N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处理时氨基氮上的亚硝基转移到芳核上去形成p-亚硝基芳胺(对位重排):通常发生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则发生邻位重排成1-亚硝基化合物:反应机理反应机理 在HCl存在下,N-亚硝基化合物首先解离成仲胺及NOCl然后进行亚硝基化:返回返回 Gabriel合成法 邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转变为邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种方法。有些情况下水解很困难,可以用肼解来代替:反应机理反应机理 邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产物的水解过程与酰胺的水解相似。反应实例反应实例 返回返回 Gattermann 反应 重氮盐用新制的铜粉代替亚铜盐(见Sandmeyer反应)作催化剂,与浓盐酸或氢溴酸发生置换反应得到氯代或溴代芳烃:本法优点是操作比较简单,反应可在较低温度下进行,缺点是其产率一般较Sandmeyer反应低。反应机理反应机理 见Sandmeyer反应 反应实例反应实例 返回返回 Gattermann-Koch 反应 芳香烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反应,生成芳香醛:反应机理反应机理 反应实例反应实例 返回返回 Hantzsch 合成法 两分子b-羰基酸酯和一分子醛及一分子氨发生缩合反应,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物。这是一个很普遍的反应,用于合成吡啶同系物。反应机理反应机理 反应过程可能是一分子b-羰基酸酯和醛反应,另一分子b-羰基酸酯和氨反应生成b-氨基烯酸酯,所生成的这两个化合物再发生Micheal加成反应,然后失水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化得到吡啶衍生物:反应实例反应实例 返回返回 Gomberg-Bachmann 反应 芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物:反应机理反应机理 反应实例反应实例 返回返回 Haworth 反应 萘和丁二酸酐发生Friedel-Crafts酰化反应然后按标准的方法还原、关环、还原、脱氢得到多环芳香族化合物。反应机理反应机理 见Friedel-Crafts酰化反应 反应实例反应实例 返回返回 Hell-Volhard-Zelinski 反应 羧酸在催化量的三卤化磷或红磷作用下,能与卤素发生a-卤代反应生成a-卤代酸:本反应也可以用酰卤作催化剂。反应机理反应机理 反应实例反应实例 返回返回 Hinsberg 反应 伯胺、仲胺分别与对甲苯磺酰氯作用生成相应的对甲苯磺酰胺沉淀,其中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反应。此反应可用于伯仲叔胺的分离与鉴定。返回返回 Hofmann 烷基化 卤代烷与氨或胺发生烷基化反应,生成脂肪族胺类:由于生成的伯胺亲核性通常比氨强,能继续与卤代烃反应,因此本反应不可避免地产生仲胺、叔胺和季铵盐,最后得到的往往是多种产物的混合物。用大过量的氨可避免多取代反应的发生,从而可得到良好产率的伯胺。反应机理反应机理 反应为典型的亲核取代反应(SN1或SN2)反应实例反应实例 返回返回 Hofmann 消除反应 季铵碱在加热条件下(100-200C)发生热分解,当季铵碱的四个烃基都是甲基时,热分解得到甲醇和三甲胺:如果季铵碱的四个烃基不同,则热分解时总是得到含取代基最少的烯烃和叔胺:反应实例反应实例 返回返回 Hofmann 重排(降解)酰胺用溴(或氯)在碱性条件下处理转变为少一个碳原子的伯胺:反应机理反应机理 反应实例反应实例 返回返回 Houben-Hoesch 反应 酚或酚醚在氯化氢和氯化锌等Lewis酸的存在下,与腈作用,随后进行水解,得到酰基酚或酰基酚醚:反应机理反应机理 反应机理较复杂,目前尚未完全阐明 反应实例反应实例 返回返回 Hunsdieecker 反应 干燥的羧酸银盐在四氯化碳中与卤素一起加热放出二氧化碳,生成比原羧酸少一个碳原子的卤代烃:X =Br,Cl,I 反应机理反应机理 反应实例反应实例 返回返回 Kiliani 氯化增碳法 糖在少量氨的存在下与氢氰酸加成得到a-羟基腈,经水解得到相应的糖酸,此糖酸极易转变为内酯,将此内酯在含水的乙醚或水溶液中用钠汞齐还原,得到比原来的糖多一个碳原子的醛糖。反应实例反应实例 返回返回 Knoevenagel 反应 含活泼亚甲基的化合物与醛或酮在弱碱性催化剂(氨、伯胺、仲胺、吡啶等有机碱)存在下缩合得到a,b-不饱和化合物。反应机理反应机理 反应实例反应实例 返回返回 Koble 反应 脂肪酸钠盐或钾盐的浓溶液电解时发生脱羧,同时两个烃基相互偶联生成烃类:如果使用两种不同脂肪酸的盐进行电解,则得到混合物:反应机理反应机理 反应实例反应实例 返回返回 有机化学反应机理有机化学反应机理 一、Arbuzov反应 三、Baeyer-villiger 反应 五、Birch 还原 七、Bucherer 反应 九、Berthsen,A.Y 吖啶合成法 十 一、Chichibabin 反应 十 三、Claisen-Schmidt 反应 十 五、Clemmensen 还原 十 七、Cope 消除反应 十 九、Curtius 反应 二十一、Dakin 反应 二十三、Edvhweiler-Clarke 反应 二十五、Favorskii 反应 二十七、Friedel-Crafts 烷基化反应 二十九、Fries 重排 三十一、Gabriel 合成法 三十三、Gattermann-Koch 反应 三十五、Hantzsch 合成法 三十七、Hell-Volhard-Zelinski反应 三十九、Hofmann 烷基化 四十一、Hofmann 重排(降解)四十三、Hunsdiecker 反应 四十五、Knoevenagel 反应 二、Arndt-Eister 反应 四、Beckmann 重排 六、Bouveault-Blanc 还原 八、Bamberger,E.重排 十、Cannizzaro 反应 十 二、Claisen 酯缩合反应 十 四、Claisen 重排 十 六、Combes 喹啉合成法 十 八、Cope 重排 二 十、Crigee,R 反应 二十二、Elbs 反应 二十四、Elbs,K 过硫酸钾氧化法 二十六、Favorskii 重排 二十八、Friedel-Crafts 酰基化反应 三 十、Fischer,O-Hepp,E 重排 三十二、Gattermann 反应 三十四、Gomberg-Bachmann 反应 三十六、Haworth 反应 三十八、Hinsberg 反应 四十、Hofmann 消除反应 四十二、Houben-Hoesch 反应 四十四、Kiliani 氯化增碳法 四十六、Koble 反应 四十八、Kolbe,H.Syntbexis of Nitroparsffini 合成 四十七、Koble-Schmitt 反应 四十九、Leuckart 反应 五十一、Mannich 反应 五十三、Michael 加成反应 五十五、Norrish 和 型裂 五十七、Orton,K.J.P 重排 五十九、Pschorr 反应 六十一、Prins,H.J 反应 六十三、Perkin,W.H 反应 六十五、Reformatsky 反应 六十七、Reppe 合成法 六十九、Rosenmund 还原 七十一、Riley,H.L 氧化法 七十三、Schiemann 反应 七十五、Skraup 合成法 七十七、Stepen 还原-氰还原为醛七十九、Strecker 氨基酸合成法 八十一、Schiemann,G.反应 八十三、Tiffeneau-Demjanov 重排八十五、Thorpe,J.F.缩合 八十七、Ullmann 反应 八十九、Vilsmeier 反应 九十一、Williamson 合成法 九十三、Wagner-Meerwein 重排 九十五、Wittig-Horner 反应 参考资料 五 十、Lossen 反应 五十二、Meerwein-Ponndorf 反应 五十四、Martius,C.A.重排 五十六、Oppenauer 氧化 五十八、Paal-Knorr 反应 六 十、Prileschajew,N 反应 六十二、Pin

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开