温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
精品
2017
小升初
数学
名校
招生
预测
11
解析
2015小升初数学名校招生预测卷11
(时间90分钟,满分100分)
题号
一
二
三
四
五
得分
得 分
评卷人
一、填空题。(每小题3分,共30分)
1. —个数由8个亿,6个百万,4个万,9个千和2个一组成,这个数写作( )。把它改写成用“亿”作单位的数是( ),省略“万”位后面的尾数约是( )。
思路分析:本题考查大数的写法和改写,写数时先按数位顺序写出数位,然后根据题意依次把各数位上的数写出即可;改写成以“亿”作单位的数,把小数点向左移动八位,在后面加一个“亿”字即可;省略“万”后面的尾数,看千位上的数,千位上的数小于5就直接舍去,千位上的数大于或等于5就进一,在后面加一个“万”字即可。
名师详解:先写出各数位,再根据题意依次把各数位上的数写出(如下表)[来源:Zxxk.Com]
数级
亿级
万级
个级
数位
千亿位
百亿位
十亿位
亿位
千万位
百万位
十万位
万位
千位
百位
十位
个位
数字
8
0
6
0
4
9
0
0
2
所以这个数写作806049002,
把806049002小数点向左移动八位是“8.06049002”,再加一个“亿”字为8.06049002亿,
806049002的千位上是9,大于5,需要进一,所以806049002≈80605万。
参考答案:806049002 8.06049002亿 80605万
易错提示:写数时按数位顺序写,避免掉数字;改写和省略尾数不一样要区分开。
2. 当是假分数,是真分数时,x=( )。
思路分析:本题考查真分数和假分数的概念及不等式的性质。根据真分数的分子小于分母,假分数的分子大于或等于分母,确定x的取值范围。
名师详解:本题中,是假分数,则有x≥9,是真分数,则有x<10,所以9≤x<10,进而得出x=9。
参考答案:9
易错提示:要注意分子等于分母时也是假分数。
3. 甲数扩大10倍等于乙数,甲、乙两数的和是22,则甲数是( )。
思路分析:本题考查倍数的相关问题。先找出甲乙两数的倍数关系,然后设未知数,列方程,解方程求出甲数。
名师详解:根据甲数扩大10倍等于乙数可知:乙数是甲数的10倍。
解:设甲数是x,则乙数为10x
x+10x=22
11x=22
x=2
参考答案:2
易错提示:切记要分析清楚谁是谁的倍数。
4. 56米减少它的后是( )米,再增加米后是( )米。
思路分析:本题考查分数的计算及应用。关键是看分数的后面有没有单位,有单位就表示一个数,没有单位表示一种关系。
名师详解:56米减少它的,它的就是56米的,也就是(56×)米,所以,56米减少它的后是56-56×=48(米),再增加米后是48+=48(米)。
参考答案:48 48
易错提示:要看清分数的后面有没有单位。
5. 把两个棱长都是3厘米的正方体拼成一个长方体,这个长方体的表面积是( )平方厘米,体积是( )立方厘米。
思路分析:本题考查长方体表面积和体积计算方面的知识。解题关键是先找出正方体拼成的长方体的长、宽、高各是多少,再根据公式计算长方体的表面积和体积。
名师详解:把两个棱长都是3厘米的正方体拼成一个长方体,则这个长方体的长是3×2=6厘米,宽是3厘米,高是3厘米。长方体的表面积=6×3×4+3×3×2=90(平方厘米)(这个长方体有4个6×3的面和2个3×3的面);长方体的体积=长×宽×高=6×3×3=54(立方厘米)。
参考答案:90 54
易错提示:把正方体拼成长方体先找准长宽高,并要牢记公式。
6. 8÷( ) = ( ): 4=0.25==( )% = ( )折。
思路分析:本题考查除法、比、分数、百分数、小数的联系和相互转化。比同除法和分数之间的关系:比的前项相当于除法算式里的被除数,也相当于分数里面的分子;比号相当于除法算式里的除号,也相当于分数的分数线;比的后项相当于除法算式里的除数,也相当于分数的分母;比值相当于除法算式的商,也相当于分数的分数值。这类题目的关键是找到突破的地方,比如本题中0.25就是突破点,从它入手依次求出各项是多少。
名师详解:把0.25换成分数是,则有8÷( )= ,( )=8÷=32;
( ): 4=,所以( )=1(比的前项相当于分数里面的分子);
=,( )×1=3×4,(比例的外项积等于内项积)得( )=12;
0.25=(25)%=(二五)折
参考答案:32 1 12 25 二五
易错提示:找到突破点,逐一填空,不要横加猜测。
7. 一个比例的两个外项分别是和,其中一个比的比值为,这个比例是( )。
8. —个圆柱体的底面半径是2厘米,髙是12厘米, 这个圆柱体的侧面积是( )平方厘米, 体积是( )立方厘米。
思路分析:本题考查圆柱体的侧面积和体积的计算方法。
名师详解:圆柱的侧面积=底面周长×高=2×3.14×2×12=150.72(平方厘米);
圆柱的体积=底面积×高=3.14×22 ×12=150.72(立方厘米)。
参考答案:150.72 150.72
易错提示:弄清楚公式,认真计算,注意单位。
9. 男生人数比女生人数少,女生人数比男生人数多( )%,男生人数和总人数的比是( ):( )。
思路分析:本题考查分数、百分数和比的相关知识。解题关键是看清对应的量。
名师详解:本题中“男生人数比女生人数少”也就是把女生人数平均分成三份,男生人数比女生人数少了1份,即男生人数︰女生人数=2︰3,假设男生有2人,女生有3人,则女生人数比男生人数多(3-2)÷2=50%,男生人数和总人数的比是2︰(2+3)=2︰5。
参考答案:50 2 5
易错提示:一定要弄清楚分数和百分数的意义,避免找错单位“1”。
10. 把一个圆柱体切削成一个最大的圆锥后,体积减少了 1.8立方分米,削成的圆锥的体积是( )。
思路分析:本题考查的是等底等高圆柱和圆锥体积之间的关系。等底等高的圆柱和圆锥的体积比是3∶1,找出题中1.8立方分米所对应的份数,根据比的应用求解。
名师详解:把一个圆柱体切削成一个最大的圆锥,则圆锥与圆柱等底等高,于是它们的体积关系是:圆锥体积:圆柱体积=1:3。即将圆锥的体积看作是1份的话,体积减少的部分是这样的(3-1)份,故圆锥的体积是:1.8÷(3-1)=0.9(立方分米)。
参考答案:0.9立方分米
得 分
评卷人
易错提示:要知道体积减少的部分是圆柱体积的,是圆锥体积的2倍。
二、选择题。(每小题3分,共15分)
1. 5千克糖果平均分装在6个袋子里,每个袋子装了这些糖果的( )。
A. B. 千克 C. 千克
思路分析:本题考查的是把5千克糖果看作一个整体,即单位“1”平均分的问题。把单位“1”平均分成多少份,取其中的几份。
名师详解:把5千克糖果(即单位“1”)平均分装在6个袋子里,即平均分成6份,求其中的一份是多少,即1÷6=。
参考答案:A
易错提示:找准单位“1”是做本题的关键。
2. 右图是一个半圆,半径为r,直径为d,这个半圆的周长是( )。
A. πr B. (π+2)r C. (πd+d)
思路分析:本题考查的是求半圆周长的问题。算出整圆的周长和圆的直径,就可得知半圆的周长。
名师详解:观察本图利用半圆的周长=它所在的整圆的周长的一半+直径,即可解答。圆的周长=2πr,则半圆的周长=πr+2 r=(π + 2)r。
参考答案:B
易错提示:误解半圆的周长的计算方法,避免将整圆的一半作为半圆的周长。
3. 某人从甲地到乙地需要小时,他走了小时,一共走了300米,他还有多少米没有走?正确的算式是( )。
A. 300÷-300 B. 300××+300
C. 300÷×-300 D. 300÷(-)
4. 小明用一张梯形纸做折纸游戏。先上下对折,使两底重合,可得图①,并测出未重叠部分的两个三角形面积和是20平方厘米。然后再将图①中两个小三角形部分向内翻折,得到图②。经测算,图②的面积相当于图①的。这张梯形纸的面积是( )平方厘米。
A. 50 B. 60 C. 100 D. 120
思路分析:本题是简单图形的折叠问题,折叠前后相重合的部分面积相等。所以原梯形的面积比图①的2倍少20平方厘米,图②的面积比图①面积少了两个三角形面积和的一半。
名师详解:根据折叠原理可知,图②的面积比图①面积少了两个三角形面积和的一半,即少20÷2=10(平方厘米),又因为图②的面积相当于图①的,所以图①的面积为10÷(1-)=60(平方厘米),则原梯形的面积为60×2-20=100(平方厘米)。故选C。
参考答案:C
易错提示:不能准确找出图形之间面积的关系。
5. 如果把乙桶中水的倒人甲桶后,甲、乙两桶中的水质量比是9:10,则甲、乙两桶原有水的质量比是( )。
A. 7:6 B. 7:12 C. 12:7 D. 6:7
思路分析:本题考查整数、小数、分数、百分数和比例的混合计算。分别用未知数表示甲乙两桶原有水的质量,分别用含有字母的数来表示乙桶中水的倒人甲桶后,甲桶和乙桶的质量,列出比例式,解比例得到结果。
名师详解:解:设甲桶原来有水x千克,乙桶原来有水y千克。
把乙桶中水的倒人甲桶后,甲桶水变为:(x+y)kg,乙桶水变为:(y)kg
则有:(x+y)︰y=9:10
10(x+y)= y×9 (根据比例的内项积等于外项积)
10x+y=y
10x=y-y
10x=y
转换为比例式:x︰y=︰10=7︰12。
参考答案:B
易错提示:要注意乙桶中水的倒人甲桶后,乙桶少了,甲桶多了,分别表示出来再化简。
得 分
评卷人
三、计算题。(共18分)
1. 直接算出得数。(每小题1分,共6分)
(1)2.8×25+12×2.5= (2)-= (3)(-)×30=
(4)×25= (5)+= (6)12.5×32×2.5=
思路分析:本题考查的是四则运算和简便方法的运用。认真分析每个算式的特点,选择正确的简便方法进行计算。
名师详解:(1)先将原式变形为2.8×25+1.2×25,再用乘法分配律进行简便计算,即2.8×25+12×2.5=2.8×25+1.2×25=(2.8+1.2)×25=4×25=100;
(2)-=-=;
(3)避免分数通分,可利用乘法分配律将小括号去掉再计算,即(-)×30=×30-×30=25-10=15;
(4)×25==20;
(5)+=+=;
(6)将32拆写成8×4,再利用乘法结合律将原式变形为(12.5×8)×(4×2.5),最后口算结果,即12.5×32×2.5=12.5×(8×4)×2.5=(12.5×8)×(4×2.5)=100×10=1000。
参考答案:(1)100 (2) (3)15 (4)20 (5) (6)1000
易错提示:认真计算,切忌粗心大意。
2. 求未知数x的值。(每小题2分,共6分)
(1)3x-x= (2)x+5×4=95 (3)=∶
思路分析:本题考查的是解方程、解比例和进行四则混合运算的能力。根据等式的性质(一)(等式的两边同时加上或减去一个相同的数,等式依然成立。)和等式的性质(二)(等式的两边同时乘以或除以一个相同的不为0的数,等式依然成立。)解方程;根据比例的基本性质(在比例中,两个外项积等于两个內项积。)解比例。
名师详解:(1)先将含有x的项合并,再解方程。
3x-x=
解:(3-)x=
x=
x=
(2)先将方程中的5×4计算出结果,再求解。
x+5×4=95
解:x+20=95
x=75
x=125
(3)将等号前面的改写成18:x,即将方程转化成比例,再根据外项积等于內项积解比例。
=:
解:18:x=:
x=18×
x=
x=36
参考答案:(1)x= (2)x=125 (3)x=36
易错提示:在解完方程后,注意检验可以避免出错。
3. 递等式计算(能简算的要简算)。(每小题2分,共6分)
(1)168.1÷(4.3×2-0.4) (2)(+)÷+ (3)×+÷
(+)÷+
=×+[来源:学科网ZXXK]
=+
=
(3)将分数的除法运算变成分数乘法运算后,发现两个乘法算式里有相同的因数,所以可以利用乘法分配律进行简便计算。
×+÷
=×+×
=×(+)
=×
=[来源:Zxxk.Com]
得 分
评卷人
参考答案:(1)20.5 (2) (3)
易错提示:切记四则混合运算的运算顺序。
四、操作与图形题。(共5分)
在下图的空格中填入不大于15且互不相同的自然数,使每一横行、竖行和对角线上的三个数之和都等于30。
思路分析:本题考查奇阶幻方问题。解答此题主要依据每行、每列、每条对角线的和都是30,先求出中间一个数为10,再确定其它各数,并结合题目中的提示逐一分析得出结论。
名师详解:因为每一横行,每一竖行及每条对角线上三个数的和都等于30,即幻和为30,所以中心数是30÷3=10,由此向前推出4个数,向后推出4个数,这9个数为6、7、8、9、10、 11、 12、 13、 14。其中有4个奇数,因为每行必须有两个奇数最后结果才能是偶数,所以,这四个奇数必须占在四个角,并且对角线上两个角的数之和是20。其它数进行调整即可得出结论。
参考答案:
13
6
11
8
10
12
9
14
7
得 分
评卷人
易错提示:先求出中间一个数为10,再判断其它各数,结合题目中的提示逐一分析,避免胡乱猜测。
五、应用题。(第1~3小题各6分,第4,5小题各7分,共32分)
1. 一列180米长的火车途径一隧道,看监控记录知火车从进入隧道到完全离开隧道用43秒,整列火车完全在隧道内的时间为23秒。问:隧道有多长?
思路分析:本题中给出两个时间,我们重点找出在这两个时间差里走了多少路程,这样就可以计算出火车的行驶速度,进而计算隧道的长。
名师详解:“看监控记录知火车从进入隧道到完全离开隧道用43秒”,是指火车头进入隧道到火车尾离开隧道用时43秒,即在43秒的时间内火车行驶的路程是:隧道长+一个车身长;“整列火车完全在隧道内的时间为23秒”,是指火车尾进入隧道到火车头出隧道用时23秒,即在23秒的时间内火车行驶的路程是:隧道长-一个车身长。这样在两个时间差里,火车行驶的路程是:两个车身长,即180×2。路程除以所对应的时间便可得到火车的行驶速度:(180×2)÷(43-23)=18(米/秒),则隧道的长=43秒行驶的路程-一个车身长,或者隧道的长=23秒行驶的路程+一个车身长,即43×18-180=594(米),或者23×18+180=594(米)。所以隧道的长是594米。
参考答案:(180×2)÷(43-23)×43-180=594(米) 答:隧道长是594米。
易错提示:对题意不够理解,不能准确找出时间差所对应的路程差是多少。
2. 甲车间与乙车间的人数比是7:8,如果从乙车间调16人到甲车间后两车间的人数就一样多,甲、乙车间原来各有多少人?
思路分析:本题考查比的应用相关知识。甲车间与乙车间人数相差的人数除以甲车间与乙车间人数相差的份数,就会得到一份的人数,然后再分别乘以份数就可以了。
名师详解:由“从乙车间调16人到甲车间后两车间的人数就一样多”可知,甲、乙两个车间相差的人数是:16×2=32(人),甲车间与乙车间的人数比是7 : 8,甲车间与乙车间的相差的份数是:8-7=1,则甲车间:32÷1×7=224(人) 乙车间:32÷1×8=256(人)。
参考答案:16×2=32(人),32÷(8-7)×7=224(人),32÷(8-7)×8=256(人)
答:甲车间原来有224人,乙车间原来有256人。[来源:Zxxk.Com]
易错提示:要理解从乙车间调16人到甲车间后两车间的人数就一样多的意思,即说明甲、乙车间相差的是“2个16”而不是“16”。
3. 客车和货车同时从甲、乙两镇中点向相反方向行驶,3小时后,客车到达甲镇,货车离乙镇还有30千米,已知货车与客车的速度比是3:4,甲、乙两镇相距多少千米?
思路分析:本题考查行程问题。路程=速度×时间,时间=路程÷速度,时间一定(3小时),路程和速度成正比例关系,客车和货车的路程比就等于速度比,用两者相差的路程除以两者相差的份数即可得到一份的量是多少,再乘以对应的份数就可以求出总路程了。
名师详解:客车和货车的路程比就等于速度比,即3:4,客车到达甲镇,货车离乙镇还有30千米说明路程差是30千米,所以客车走的路程为30÷(4-3)×4=120(千米)。题目中从中点向相反方向行驶,说明客车行驶的是甲乙两镇距离的一半,所以甲、乙两镇相距120×2=240(千米)。
参考答案:30÷(4-3)×4×2
=30×4×2
=120×2
=240(千米)
答:甲、乙两镇相距240千米。
易错提示:切记分析清楚数量关系后再列式计算。
4. 30个鸡蛋,其中有一个双黄蛋,检测员给鸡蛋排序号,把单数鸡蛋全都拿走,但是没有一个是双黄蛋。检测员再把剩下的鸡蛋排序,再把单数鸡蛋拿走,可是,还是没有双黄蛋,以此类推,最后一个是双黄蛋。请问:双黄蛋第一次的序号是多少?
思路分析:本题考查的是有关倍数的问题。2的倍数特征是:个位上是0、2、4、6、8的自然数。
名师详解:以10个数为例:
1,2,3,4,5,6,7,8,9,10
第一次拿走奇数:1,3,5,7,9,剩下2的倍数。
第二次拿走:2,6,10,剩下4的倍数。
第三次拿走:4,剩下8的倍数。
所以在1~30中最后剩下的数为,因为<30,所以= 16。
参考答案:16
易错提示:认真分析本题,寻找规律,不要盲目的做题。
5. 小明星期天请6名同学来家做客,他选用一盒用长方体(如图(1))包装的饮料招待同学,给每名同学倒上一满杯(如图(2))后,他自己还有喝的饮料吗?(写出主要过程)
思路分析:先根据长方体的体积计算方法计算出饮料的总量,再根据圆柱的体积计算方法计算出每名同学喝饮料的多少,乘以6就是6名同学喝饮料的量,最后比较饮料总量与6名同学喝饮料的量,看有否剩余,有剩余的话,就还有小明自己喝的饮料,反之则没有。
名师详解:由图示可知,长方体的长、宽、高分别是15厘米、12厘米、6厘米,所以这盒饮料的总量有15×12×6=1080(立方厘米);圆柱体的底面积是20平方厘米,高是8厘米,所以每名同学要喝饮料20×8=160(立方厘米),则6名同学需要饮料:160×6=960(立方厘米)。而1080立方厘米﹥960立方厘米,所以还有小明自己喝的饮料。
参考答案:15×12×6=1080(立方厘米) 20×8×6=960(立方厘米)
1080立方厘米﹥960立方厘米 答:他自己还有喝的饮料。
易错提示:应熟记长方体、圆柱体等立体图形的体积计算方法。