分享
2023届山东省济南市师范大学附属中学高三3月份模拟考试数学试题(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 山东省 济南市 师范大学 附属中学 月份 模拟考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. “角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的( ) A.6 B.7 C.8 D.9 2.已知随机变量满足,,.若,则( ) A., B., C., D., 3.设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是( ) A. B. C. D. 4.的展开式中各项系数的和为2,则该展开式中常数项为 A.-40 B.-20 C.20 D.40 5.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 6.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为( ) A.3 B.2 C.1 D.0 7.已知向量,(其中为实数),则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 8.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为( ) A. B. C. D. 9.函数在的图像大致为 A. B. C. D. 10.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是( ) A.AC⊥BE B.EF平面ABCD C.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值 11.已知全集,集合,,则( ) A. B. C. D. 12.已知复数z,则复数z的虚部为( ) A. B. C.i D.i 二、填空题:本题共4小题,每小题5分,共20分。 13.设函数,则满足的的取值范围为________. 14.若函数,则的值为______. 15.如图所示的流程图中,输出的值为______. 16.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题: ①当时,存在实数m,使函数恰有5个不同的零点; ②若,函数的零点不超过4个,则; ③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列. 其中,正确命题的序号是_______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且. (Ⅰ)求证:面; (Ⅱ)求证:平面平面; (Ⅲ)求该几何体的体积. 18.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为. (1)求直线l的普通方程与曲线C的直角坐标方程; (2)设点,直线l与曲线C交于不同的两点A、B,求的值. 19.(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元. (1)若选择生产线①,求生产成本恰好为18万元的概率; (2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由. 20.(12分)眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图. (1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数; (2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系? (3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望. 附: 0.10 0.05 0.025 0.010 0.005 k 2.706 3.841 5.024 6.635 7.879 21.(12分)已知函数,其中,. (1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由. (2)若在处取得极大值,求实数a的取值范围. 22.(10分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,. (1)求椭圆的标准方程; (2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 模拟程序运行,观察变量值可得结论. 【题目详解】 循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出. 故选:B. 【答案点睛】 本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论. 2、B 【答案解析】 根据二项分布的性质可得:,再根据和二次函数的性质求解. 【题目详解】 因为随机变量满足,,. 所以服从二项分布, 由二项分布的性质可得:, 因为, 所以, 由二次函数的性质可得:,在上单调递减, 所以. 故选:B 【答案点睛】 本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题. 3、B 【答案解析】 由题意首先确定导函数的符号,然后结合题意确定函数在区间和处函数的特征即可确定函数图像. 【题目详解】 函数在上可导,其导函数为,且函数在处取得极大值, 当时,;当时,;当时,. 时,,时,, 当或时,;当时,. 故选: 【答案点睛】 根据函数取得极大值,判断导函数在极值点附近左侧为正,右侧为负,由正负情况讨论图像可能成立的选项,是判断图像问题常见方法,有一定难度. 4、D 【答案解析】 令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D 解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x. 故常数项==-40+80=40 5、C 【答案解析】 试题分析:根据充分条件和必要条件的定义进行判断即可. 解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列, 若数列{an}为单调递增数列,则a2>a1,成立, 即“a2>a1”是“数列{an}为单调递增数列”充分必要条件, 故选C. 考点:必要条件、充分条件与充要条件的判断. 6、C 【答案解析】 根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③. 【题目详解】 ①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题; ②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题; ③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题. 故选:. 【答案点睛】 本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题. 7、A 【答案解析】 结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件. 【题目详解】 由,则,所以;而 当,则,解得或.所以 “”是“”的充分不必要条件. 故选:A 【答案点睛】 本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识. 8、C 【答案解析】 将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围. 【题目详解】 依题意 , 则, 当时,,故函数在上单调递增, 当时,; 而函数在上单调递减, 故, 则只需, 故,解得, 故实数的取值范围为. 故选:C. 【答案点睛】 本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题. 9、B 【答案解析】 由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果. 【题目详解】 设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B. 【答案点睛】 本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查. 10、D 【答案解析】 A.通过线面的垂直关系可证真假;B.根据线面平行可证真假;C.根据三棱锥的体积计算的公式可证真假;D.根据列举特殊情况可证真假. 【题目详解】 A.因为,所以平面, 又因为平面,所以,故正确; B.因为,所以,且平面,平面, 所以平面,故正确; C.因为为定值,到平面的距离为, 所以为定值,故正确; D.当,,取为,如下图所示: 因为,所以异面直线所成角为, 且, 当,,取为,如下图所示: 因为,所以四边形是平行四边形,所以, 所以异面直线所成角为,且, 由此可知:异面直线所成角不是定值,故错误. 故选:D. 【答案点睛】 本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内. 11、B 【答案解析】 直接利用集合的基本运算求解即可. 【题目详解】 解:全集,集合,, 则, 故选:. 【答案点睛】 本题

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开