ÉÇŒÆ2014—2015Æc1˜ÆÏ5p�êÆB16•ÁÁò£Ï¥¤˜!OŽe�ˆK£�48©§zK6©§�8K¤(1)limx→0(cosx)1ln(1+x2).(2)limx→0(1+sinx)x−1x2.(3)limn→∞�1+12+···+1n�1n.(4)�y=(3x2−2)sin2x,¦y(100).(5)¦d•§xy+ey=e¤(½�Û¼êy=y(x)����êy′′(0).(6)�¼êy=y(x)dëê•§���x=t3+9ty=t2−2t¤(½,¦-‚y=y(x)�eà«m.(7)�¼êy=y(x)d•§���x=arctant2y−ty2+et=5¤(½,¦dydx.(8)®•f(x)=�����g(x)−cosxx,x̸=0a,x=0,Ù¥g(x)k��ëY�ê,…g(0)=1,•¦f(x)3x=0?ëY,(½a�Š,¿¦f′(x).�!£8©¤¦¼êf(x)=(1+x)xtan(x−π4)3«m(0,2π)S�mä:,¿�äa..n!£8©¤®•¼êy=x−1x2+1,¦¼ê�O~«m!]à«m!4Š,-‚�$:ÚìC‚.o!£8©¤�f(x)3[0,1]þn�Œ�,…f(0)=f(1)=f′(1)=0,y²:3(0,1)S•3˜:c,¦3f′′(c)+cf′′′(c)=0.Ê!£8©¤�f(x)3(−∞,+∞)þŒ�…F(x)=f(x)(1+|sinx|),y²:F(x)3x=0?Œ��¿©7‡^‡´f(0)=0.8!£8©¤�f(x)=�����xarctan1x2,x̸=00,x=0,y²:f′(x)3x=0?ëY.Ô!£8©¤�f(x)3x=a?��Œ�,…f(a)=f′(a)=0,f′′(a)=1,¦limx→af(x)sin(x−a)(ex−ea)3.l!£4©¤�E˜‡3(−∞,+∞)SëY�¼ê,¦Ù3•½�n‡ØÓ�:a1,a2,···,an��êØ•3,`²nd.