[基础题组练]1.过椭圆C:+=1(a>b>0)的右顶点A且斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为左焦点F,若0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是()A.B.C.2D.解析:选A.因为OM⊥PF,且MF=PM,所以OP=OF,所以∠OFP=45°,所以|OM|=|OF|·sin45°,即a=c·,所以e==.3.(2018·高考浙江卷)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足AP=2PB,则当m=________时,点B横坐标的绝对值最大.解析:设A(x1,y1),B(x2,y2),由AP=2PB,得即x1=-2x2,y1=3-2y2.因为点A,B在椭圆上,所以得y2=m+,所以x=m-(3-2y2)2=-m2+m-=-(m-5)2+4≤4,所以当m=5时,点B横坐标的绝对值最大,最大值为2.答案:54.已知椭圆C:+=1的右焦点为F,P为椭圆C上一动点,定点A(2,4),则|PA|-|PF|的最小值为________.解析:如图,设椭圆的左焦点为F′,则|PF|+|PF′|=4,所以|PF|=4-|PF′|,所以|PA|-|PF|=|PA|+|PF′|-4.当且仅当P,A,F′三点共线时,|PA|+|PF′|取最小值|AF′|==5,所以|PA|-|PF|的最小值为1.答案:15.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若k=1,求|AB|的最大值.解:(1)由题意得解得a=,b=1.所以椭圆M的方程为+y2=1.(2)设直线l的方程为y=x+m,A(x1,y1),B(x2,y2).由得4x2+6mx+3m2-3=0.所以x1+x2=-,x1x2=.|AB|====.当m=0,即直线l过原点时,|AB|最大,最大值为.6.(2018·高考浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.解:(1)设P(x0,y0),A,B.因为PA,PB的中点在抛物线上,所以y1,y2为方程=4·即y2-2y0y+8x0-y=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)由(1)可知所以|PM|=(y+y)-x0=y-3x0,|y1-y2|=2.因此,△PAB的面积S△PAB=|PM|·|y1-y2|=(y-4x0).因为x+=1(x0<0),所以y-4x0=-4x-4x0+4∈[4,5],因此,△PAB面积的取值范围是.[综合题组练]1.(综合型)(2...